On the Nonlinear Geometric Behaviour of Flared Folding Wingtips

2022 ◽  
Author(s):  
Fintan Healy ◽  
Ronald C. Cheung ◽  
Djamel Rezgui ◽  
Jonathan E. Cooper ◽  
Thomas Wilson ◽  
...  
Keyword(s):  
1989 ◽  
Vol 17 (2) ◽  
pp. 86-99 ◽  
Author(s):  
I. Gardner ◽  
M. Theves

Abstract During a cornering maneuver by a vehicle, high forces are exerted on the tire's footprint and in the contact zone between the tire and the rim. To optimize the design of these components, a method is presented whereby the forces at the tire-rim interface and between the tire and roadway may be predicted using finite element analysis. The cornering tire is modeled quasi-statically using a nonlinear geometric approach, with a lateral force and a slip angle applied to the spindle of the wheel to simulate the cornering loads. These values were obtained experimentally from a force and moment machine. This procedure avoids the need for a costly dynamic analysis. Good agreement was obtained with experimental results for self-aligning torque, giving confidence in the results obtained in the tire footprint and at the rim. The model allows prediction of the geometry and of the pressure distributions in the footprint, since friction and slip effects in this area were considered. The model lends itself to further refinement for improved accuracy and additional applications.


Author(s):  
Ronald S. LaFleur

Abstract This paper presents the computational evolution of minimum energy dissipation iceform contours. The ice/water interface is shaped according to fluid dynamic and heat transfer characteristics of the flow field near the interface. A Couette iceform design model is used to approximate flow and thermal field behavior near the interface. The theory used to calculate the interface shape is based on a wedge model of the ice contour over a cold flat plate. The steady state ice profile is calculated when Reynolds number and the thermal parameter are selected. The generation function, designation function and energy dissipation are related to the nonlinear geometric development. An optimal preprocess criterion is prescribed as zero evolution length. The result is optimal geometries that are adapted to the flow and thermal constraints.


Sign in / Sign up

Export Citation Format

Share Document