Design and Aerodynamic Performance of a FishBAC Morphing Wing

2022 ◽  
Author(s):  
Arthur Wong ◽  
Cees Bil ◽  
Matthew Marino
Author(s):  
Manoj Prabakar Sargunaraj ◽  
Dibya Raj R. Adhikari ◽  
Carlos E. Soto ◽  
Samik Bhattacharya

2019 ◽  
Vol 16 (6) ◽  
pp. 172988141988674 ◽  
Author(s):  
Yaqing Zhang ◽  
Wenjie Ge ◽  
Ziang Zhang ◽  
Xiaojuan Mo ◽  
Yonghong Zhang

The morphing wing with large deformation can benefit its flight performance a lot in different conditions. In this study, a variable camber morphing wing with compliant leading and trailing edges is designed by large-displacement compliant mechanisms. The compliant mechanisms are carried out by a hyperelastic structure topology optimization, based on a nonlinear meshless method. A laminated leading-edge skin is designed to fit the curvature changing phenomenon of the leading edge during deformation. A morphing wing demonstrator was manufactured to testify its deformation capability. Comparing to other variable camber morphing wings, the proposal can realize larger deflection of leading and trailing edges. The designed morphing wing shows great improvement in aerodynamic performance and enough strength to resist aerodynamic and structural loadings.


2010 ◽  
Vol 114 (1154) ◽  
pp. 237-244 ◽  
Author(s):  
C. Thill ◽  
J. D. Downsborough ◽  
S. J. Lai ◽  
I. P. Bond ◽  
D. P. Jones

AbstractCorrugated structures offer a potential solution for morphing wing skin applications due to their anisotropic behaviour that allows chordwise camber and length changes. Aerofoils with corrugated skins in the aft 1/3 of the chordwise section have been studied experimentally and computationally using various corrugation shapes and forms (sinusoidal, trapezoidal and triangular) at different Reynolds numbers. The study showed that the aerodynamic performance is highly dependent on corrugation amplitude, wavelength, gradient (combination of amplitude and wavelength) and Reynolds number. Evidence is given highlighting that penalties for having a non-smooth surface in the aft 1/3 of the chordwise section of an aerofoil can be eliminated for the lift curve slope and minimised for the zero lift drag coefficient.


2017 ◽  
Vol 260 ◽  
pp. 85-91 ◽  
Author(s):  
Gurvan Jodin ◽  
Johannes Scheller ◽  
Eric Duhayon ◽  
Jean François Rouchon ◽  
Marianna Braza

Amongst current aircraft research topics, morphing wing is of great interest for improving the aerodynamic performance. A morphing wing prototype has been designed for wind tunnel experiments. The rear part of the wing - corresponding to the retracted flap - is actuated via a hybrid actuation system using both low frequency camber control and a high frequency vibrating trailing edge. The camber is modified via surface embedded shape memory alloys. The trailing edge vibrates thanks to piezoelectric macro-fiber composites. The actuated camber, amplitude and frequency ranges are characterized. To accurately control the camber, six independent shape memory alloy wires are controlled through nested closed-loops. A significant reduction in power consumption is possible via this control strategy. The effects on flow via morphing have been measured during wind tunnel experiments. This low scale mock-up aims to demonstrate the hybrid morphing concept, according to actuator capabilities point of view as well as aerodynamic performance.


2018 ◽  
Vol 7 (4.13) ◽  
pp. 89
Author(s):  
N. I. Ismail ◽  
H. Yusoff ◽  
Hazim Sharudin ◽  
Arif Pahmi ◽  
H. Hafi ◽  
...  

Micro Air Vehicle, or also commonly known as MAV, is a miniature aircraft that has been gaining interest in the industry. MAV is defined as a flying platform with 15cm wingspan and operates at a speed of around 10m/s. Recently, MAV has been exposed with the latest development and link towards the biologically-inspired designs such as morphing wing. Twist morphing wing is one of the latest MAV wing design developments. The application of Twist Morphing (TM) on MAV wing has been previously known to produce better aerodynamic performance. Previous study in washin TM wing has shown a promising possibility of generating higher lift force. Despite the benevolent performance exhibited by the washin TM wing, the lift distribution for the washout type of TM MAV is relatively unknown and still open to be explored. This is probably due to the lack of experimental test rig to produce the washout twist morphing motion on the MAV wing. Therefore, this research aims to produce a special test rig for washout TM wing that is compatible for wind tunnel experimental testing. By using the special test rig, the experimental investigation on the lift performance of washout TM MAV wing can be done. Based on the wing deformation results, it clearly shows that the proposed test rig is capable to produce up to 19.5mm tip deflection at the morphing point, which is also resulting in a significant morphing motion. Higher morphing force induces larger morphing motion. Based on the lift distribution results, they show that the morphing motion has significantly affected the overall lift distribution on the MAV wing. The morphing motion on TM wing has produced at least 17.6% and 5.33% lower CL and CLmax magnitude, respectively, with the membrane wing especially at the pre-stall region. However, the TM wing is still able to maintain the stall angle similar to the baseline wing at αstall= 31°. By maintaining high αstall value with lower CL and CLmax magnitude, TM wing produces more agility for the MAV maneuverability that will be useful for indoor mission or obstacle avoidance flight.  


2019 ◽  
Author(s):  
Jean-Baptiste Tô ◽  
Pawel Flaszynski ◽  
Nikolaos Simiriotis ◽  
Abderahmane Marouf ◽  
Ryszard Szwaba ◽  
...  

2017 ◽  
Vol 7 (1) ◽  
pp. 20160092 ◽  
Author(s):  
M. Di Luca ◽  
S. Mintchev ◽  
G. Heitz ◽  
F. Noca ◽  
D. Floreano

Small-winged drones can face highly varied aerodynamic requirements, such as high manoeuvrability for flight among obstacles and high wind resistance for constant ground speed against strong headwinds that cannot all be optimally addressed by a single aerodynamic profile. Several bird species solve this problem by changing the shape of their wings to adapt to the different aerodynamic requirements. Here, we describe a novel morphing wing design composed of artificial feathers that can rapidly modify its geometry to fulfil different aerodynamic requirements. We show that a fully deployed configuration enhances manoeuvrability while a folded configuration offers low drag at high speeds and is beneficial in strong headwinds. We also show that asymmetric folding of the wings can be used for roll control of the drone. The aerodynamic performance of the morphing wing is characterized in simulations, in wind tunnel measurements and validated in outdoor flights with a small drone.


2021 ◽  
Author(s):  
Ryan Perera

Module discretization and consolidation was performed on morphing wing profiles optimized for climb, cruise, and descent flight regimes. Wing profiles were created using an optimization algorithm based on their aerodynamic performance for the three flight regimes. A module discretization method was applied for the three cases and the minimum number of modules were found for each case without significantly sacrificing performance. The three wing profiles were then consolidated into a single final wing using a newly proposed method for combining closely aligned joints based on a weighting scale for each flight regime. When the final wing’s performance was compared to the original wing profiles a reduction of 5% and 2% was observed for climb and descent configurations, respectively. The cruise configuration was found have a 3% increase when compare to the original profile. The final wing was found to successfully maintain aerodynamic performance during module discretization and consolidation process.


2021 ◽  
Author(s):  
Ryan Perera

Module discretization and consolidation was performed on morphing wing profiles optimized for climb, cruise, and descent flight regimes. Wing profiles were created using an optimization algorithm based on their aerodynamic performance for the three flight regimes. A module discretization method was applied for the three cases and the minimum number of modules were found for each case without significantly sacrificing performance. The three wing profiles were then consolidated into a single final wing using a newly proposed method for combining closely aligned joints based on a weighting scale for each flight regime. When the final wing’s performance was compared to the original wing profiles a reduction of 5% and 2% was observed for climb and descent configurations, respectively. The cruise configuration was found have a 3% increase when compare to the original profile. The final wing was found to successfully maintain aerodynamic performance during module discretization and consolidation process.


Sign in / Sign up

Export Citation Format

Share Document