A Generic Model of Nonlinear Helicopter Dynamics for Intelligent Avionics Systems and Trajectory Based Applications

2022 ◽  
Author(s):  
Baris Baspinar
Keyword(s):  
2003 ◽  
Vol 42 (03) ◽  
pp. 203-211 ◽  
Author(s):  
J. L. G. Dietz ◽  
A. Hasman ◽  
P. F. de Vries Robbé ◽  
H. J. Tange

Summary Objectives: Many shared-care projects feel the need for electronic patient-record (EPR) systems. In absence of practical experiences from paper record keeping, a theoretical model is the only reference for the design of these systems. In this article, we review existing models of individual clinical practice and integrate their useful elements. We then present a generic model of clinical practice that is applicable to both individual and collaborative clinical practice. Methods: We followed the principles of the conversation-for-action theory and the DEMO method. According to these principles, information can only be generated by a conversation between two actors. An actor is a role that can be played by one or more human subjects, so the model does not distinguish between inter-individual and intra-individual conversations. Results: Clinical practice has been divided into four actors: service provider, problem solver, coordinator, and worker. Each actor represents a level of clinical responsibility. Any information in the patient record is the result of a conversation between two of these actors. Connecting different conversations to one another can create a process view with meta-information about the rationale of clinical practice. Such process view can be implemented as an extension to the EPR. Conclusions: The model has the potential to cover all professional activities, but needs to be further validated. The model can serve as a theoretical basis for the design of EPR-systems for shared care, but a successful EPR-system needs more than just a theoretical model.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 563
Author(s):  
Babu Rajendiran ◽  
Jayashree Kanniappan

Nowadays, many business organizations are operating on the cloud environment in order to diminish their operating costs and to select the best service from many cloud providers. The increasing number of Cloud Services available on the market encourages the cloud consumer to be conscious in selecting the most apt Cloud Service Provider that satisfies functionality, as well as QoS parameters. Many disciplines of computer-based applications use standardized ontology to represent information in their fields that indicate the necessity of an ontology-based representation. The proposed generic model can help service consumers to identify QoS parameters interrelations in the cloud services selection ontology during run-time, and for service providers to enhance their business by interpreting the various relations. The ontology has been developed using the intended attributes of QoS from various service providers. A generic model has been developed and it is tested with the developed ontology.


Author(s):  
Jin Zhou ◽  
Qing Zhang ◽  
Jian-Hao Fan ◽  
Wei Sun ◽  
Wei-Shi Zheng

AbstractRecent image aesthetic assessment methods have achieved remarkable progress due to the emergence of deep convolutional neural networks (CNNs). However, these methods focus primarily on predicting generally perceived preference of an image, making them usually have limited practicability, since each user may have completely different preferences for the same image. To address this problem, this paper presents a novel approach for predicting personalized image aesthetics that fit an individual user’s personal taste. We achieve this in a coarse to fine manner, by joint regression and learning from pairwise rankings. Specifically, we first collect a small subset of personal images from a user and invite him/her to rank the preference of some randomly sampled image pairs. We then search for the K-nearest neighbors of the personal images within a large-scale dataset labeled with average human aesthetic scores, and use these images as well as the associated scores to train a generic aesthetic assessment model by CNN-based regression. Next, we fine-tune the generic model to accommodate the personal preference by training over the rankings with a pairwise hinge loss. Experiments demonstrate that our method can effectively learn personalized image aesthetic preferences, clearly outperforming state-of-the-art methods. Moreover, we show that the learned personalized image aesthetic benefits a wide variety of applications.


2021 ◽  
pp. 1-31
Author(s):  
S.H. Derrouaoui ◽  
Y. Bouzid ◽  
M. Guiatni

Abstract Recently, transformable Unmanned Aerial Vehicles (UAVs) have become a subject of great interest in the field of flying systems, due to their maneuverability, agility and morphological capacities. They can be used for specific missions and in more congested spaces. Moreover, this novel class of UAVs is considered as a viable solution for providing flying robots with specific and versatile functionalities. In this paper, we propose (i) a new design of a transformable quadrotor with (ii) generic modeling and (iii) adaptive control strategy. The proposed UAV is able to change its flight configuration by rotating its four arms independently around a central body, thanks to its adaptive geometry. To simplify and lighten the prototype, a simple mechanism with a light mechanical structure is proposed. Since the Center of Gravity (CoG) of the UAV moves according to the desired morphology of the system, a variation of the inertia and the allocation matrix occurs instantly. These dynamics parameters play an important role in the system control and its stability, representing a key difference compared with the classic quadrotor. Thus, a new generic model is developed, taking into account all these variations together with aerodynamic effects. To validate this model and ensure the stability of the designed UAV, an adaptive backstepping control strategy based on the change in the flight configuration is applied. MATLAB simulations are provided to evaluate and illustrate the performance and efficiency of the proposed controller. Finally, some experimental tests are presented.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Andreas Ekstedt ◽  
Johan Löfgren

Abstract The electroweak phase transition broke the electroweak symmetry. Perturbative methods used to calculate observables related to this phase transition suffer from severe problems such as gauge dependence, infrared divergences, and a breakdown of perturbation theory. In this paper we develop robust perturbative tools for dealing with phase transitions. We argue that gauge and infrared problems are absent in a consistent power-counting. We calculate the finite temperature effective potential to two loops for general gauge-fixing parameters in a generic model. We demonstrate gauge invariance, and perform numerical calculations for the Standard Model in Fermi gauge.


2005 ◽  
Vol 54 (4) ◽  
pp. 564-571 ◽  
Author(s):  
C.R. Cassady ◽  
I.M. Iyoob ◽  
K. Schneider ◽  
E.A. Pohl

Sign in / Sign up

Export Citation Format

Share Document