Design and GVT of a dynamically scaled wing structure for fuel sloshing investigations

2022 ◽  
Author(s):  
Lucian Constantin ◽  
Joe J. De Courcy ◽  
Branislav Titurus ◽  
T. Rendall ◽  
Jonathan E. Cooper
Keyword(s):  
2021 ◽  
Vol 1057 (1) ◽  
pp. 012027
Author(s):  
Govindu Sandhya ◽  
Vemireddy Sri Rishitha ◽  
S Sriram ◽  
VM Sreehari

1964 ◽  
Vol 96 (1-2) ◽  
pp. 98-98 ◽  
Author(s):  
J. W. Arnold

Despite their inert appearance, the wings of insects are living appendages and are supplied with blood. This is true for definitive wings as well as for developing ones, and for modified wings such as tegmina, elytra, hemelytra, and halteres as for those that are specialized for flight. Typically the blood circulates only through the wing veins, but in some insects it escapes into the surrounding membrane in certain areas, and in highly modified forms it may be entirely unconfined. The course of circulation is basically the same in the wings of most insects. It flows outward from the body in the costo-medial veins, moves toward the posterior margins via cross-veins, and returns to the body through the cubito-anal veins and axillary cord. However, rhe precise route followed is highly variable concomitant with distinctive patterns of venation in different taxonomic groups and with wing structure. This is illustrated for a number of orders.


2016 ◽  
Vol 846 ◽  
pp. 535-540
Author(s):  
David J. Munk ◽  
David W. Boyd ◽  
Gareth A. Vio

Designing structures with frequency constraints is an important task in aerospace engineering. Aerodynamic loading, gust loading, and engine vibrations all impart dynamic loads upon an airframe. To avoid structural resonance and excessive vibration, the natural frequencies of the structure must be shifted away from the frequency range of any dynamic loads. Care must also be taken to ensure that the modal frequencies of a structure do not coalesce, which can lead to dramatic structural failure. So far in industry, no aircraft lifting surfaces are designed from the ground up with frequency optimisation as the primary goal. This paper will explore computational methods for achieving this task.This paper will present a topology optimisation algorithm employing the Solid Isotropic Microstructure with Penalisation (SIMP) method for the design of an optimal aircraft wing structure for rejection of frequency excitation.


2021 ◽  
Vol 238 ◽  
pp. 104155
Author(s):  
Chunyan Fang ◽  
Zhanfeng Ye ◽  
Tingting Gai ◽  
Kunpeng Lu ◽  
Fangyin Dai ◽  
...  

Author(s):  
O.V. Tatarnikov ◽  
W.A. Phyo ◽  
Lin Aung Naing

This paper describes a method for optimizing the design of a spar-type composite aircraft wing structure based on multi-criterion approach. Two types of composite wing structures such as two-spar and three-spar ones were considered. The optimal design of a wing frame was determined by the Pareto method basing on three criteria: minimal weight, minimal wing deflection, maximal safety factor and minimal weight. Positions of wing frame parts, i.e. spars and ribs, were considered as optimization parameters. As a result, an optimal design of a composite spar-type wing was proposed. All the calculations necessary to select the optimal structural and design of the spar composite wing were performed using nonlinear static finite element analysis in the FEMAP with NX Nastran software package.


2012 ◽  
Vol 116 (1178) ◽  
pp. 363-372
Author(s):  
P. O. Jemitola ◽  
J. Fielding ◽  
P. Stocking

Abstract A computational study was performed to compare the stress distributions in finite element torsion box models of a box wing structure that result from employing four different wing/end fin joint fixities. All considered wings were trimmed in pitch. The joint fixities refer to the type of attachment that connects the tip of the fore and aft wings to the end fin. Using loads from a vortex lattice tool, the analysis determined the best wing-joint fixity of a statically loaded idealised box wing configuration by comparing the stress distributions resulting from the different wing joints in addition to other essential aerodynamic requirements. Analysis of the wing joint fixity indicates that the rigid joint is the most suitable.


Sign in / Sign up

Export Citation Format

Share Document