Proof Testing Aluminum and Titanium Thin-Walled Tubes for Aerospace Applications

2022 ◽  
Author(s):  
Leah B. Davis ◽  
Mark McElroy ◽  
Shireen Afshan ◽  
Allen Kwan
2005 ◽  
Vol 127 (3) ◽  
pp. 262-268 ◽  
Author(s):  
G. Baskaran ◽  
K. Balasubramaniam ◽  
C. V. Krishnamurthy ◽  
C. Lakshmana Rao

It is necessary to size the cracklike defects accurately in order to extend the life of thin-walled (<10mm) components (such as pressure vessels) particularly for aerospace applications. This paper discusses the successful application of ray techniques to simulate the ultrasonic time-of-flight diffraction experiments for platelike structures. For the simulation, the diffraction coefficients are computed using the geometric diffraction theory. The A and B scans are simulated in near real time and the different experimental parameters can be interactively controlled due to the computational efficiency of the ray technique. The simulated results are applied to (1) defect signal identification for vertical defects, (2) inspection of inclined defects, and (3) study the effect of pulse width or probe frequency on experimental results. The simulated results are compared with laboratory scale experimental results.


2020 ◽  
Vol 7 (1) ◽  
pp. 001-005
Author(s):  
Arie Yudha Budiman ◽  
Amrifan Saladin Mohruni

Cutting fluids are widely used in machining processes throughout the world. However, this cutting liquid is the source of many environmental pollution problems. In order to reduce or eliminate the effect produced by cutting fluids, it is necessary to switch to a continuous machining technique such as using small amounts of cutting fluid, liquid nitrogen, vegetable oil or compressed air as a cooling lubrication medium. Cryogenic coolant is found to be more efficient, economical, cost-effective and environmentally friendly when compared to the conventional coolant, especially in mass production. In machining difficult-to-cut materials such as thin walled materials for the aerospace industry, cooling applications are needed. Ni-based super alloy, Inconel is a material for aerospace applications because of its high durability to wear and material that is resistant to oxidation and corrosion at high temperatures. This paper presents a review and explanation of thin wall machining using cryogenic cooling systems on Inconel or aerospace materials.


2016 ◽  
Vol 1140 ◽  
pp. 213-220 ◽  
Author(s):  
Rouven Hense ◽  
Tobias Siebrecht ◽  
Petra Wiederkehr

The occurrence of chatter vibrations in milling processes often results in bad surface qualities and in an increased tool wear. When using special fixture systems for structural parts in the aerospace industry, the vibrations of the workpiece and the fixture can become critical due to their limited stiffness. For the process design, a prediction of the appearance of these kind of vibrations using specialised simulation approaches is very helpful. In this article, a simulation system is presented, which is able to simulate chatter vibrations of the workpiece in spindle direction, taking the dynamic behaviour of the thin-walled bottom of the workpiece and the fixture into account. Experiments were conducted to demonstrate the basic effect and to validate the simulation system. Furthermore, the machining and the simulation of a pocket of a structural component for aerospace applications is analysed.


Author(s):  
R. E. Herfert ◽  
N. T. McDevitt

Durability of adhesive bonded joints in moisture and salt spray environments is essential to USAF aircraft. Structural bonding technology for aerospace applications has depended for many years on the preparation of aluminum surfaces by a sulfuric acid/sodium dichromate (FPL etch) treatment. Recently, specific thin film anodizing techniques, phosphoric acid, and chromic acid anodizing have been developed which not only provide good initial bond strengths but vastly improved environmental durability. These thin anodic films are in contrast to the commonly used thick anodic films such as the sulfuric acid or "hard" sulfuric acid anodic films which are highly corrosion resistant in themselves, but which do not provide good initial bond strengths, particularly in low temperature peel.The objective of this study was to determine the characteristics of anodic films on aluminum alloys that make them corrosion resistant. The chemical composition, physical morphology and structure, and mechanical properties of the thin oxide films were to be defined and correlated with the environmental stability of these surfaces in humidity and salt spray. It is anticipated that anodic film characteristics and corrosion resistance will vary with the anodizing processing conditions.


Author(s):  
Gerald B. Feldewerth

In recent years an increasing emphasis has been placed on the study of high temperature intermetallic compounds for possible aerospace applications. One group of interest is the B2 aiuminides. This group of intermetaliics has a very high melting temperature, good high temperature, and excellent specific strength. These qualities make it a candidate for applications such as turbine engines. The B2 aiuminides exist over a wide range of compositions and also have a large solubility for third element substitutional additions, which may allow alloying additions to overcome their major drawback, their brittle nature.One B2 aluminide currently being studied is cobalt aluminide. Optical microscopy of CoAl alloys produced at the University of Missouri-Rolla showed a dramatic decrease in the grain size which affects the yield strength and flow stress of long range ordered alloys, and a change in the grain shape with the addition of 0.5 % boron.


Sign in / Sign up

Export Citation Format

Share Document