Active Control of Boundary-layer Transition in Laminar Separation Bubbles

2022 ◽  
Author(s):  
David Borgmann ◽  
Shirzad Hosseinverdi ◽  
Jesse C. Little ◽  
Hermann F. Fasel
Author(s):  
Varun Chitta ◽  
Tausif Jamal ◽  
D. Keith Walters

A numerical analysis is performed to study the pre-stall and post-stall aerodynamic characteristics over a group of six airfoils using commercially available transition-sensitive and fully turbulent eddy-viscosity models. The study is focused on a range of Reynolds numbers from 6 × 104 to 2 × 106, wherein the flow around the airfoil is characterized by complex phenomena such as boundary layer transition, flow separation and reattachment, and formation of laminar separation bubbles on either the suction, pressure or both surfaces of airfoil. The predictive capability of the transition-sensitive k-kL-ω model versus the fully turbulent SST k-ω model is investigated for all airfoils. The transition-sensitive k-kL-ω model used in this study is capable of predicting both attached and separated turbulent flows over the surface of an airfoil without the need for an external linear stability solver to predict transition. The comparison between experimental data and results obtained from the numerical simulations is presented, which shows that the boundary layer transition and laminar separation bubbles that appear on the suction and pressure surfaces of the airfoil can be captured accurately by the use of a transition-sensitive model. The fully turbulent SST k-ω model predicts a turbulent boundary layer on both surfaces of the airfoil for all angles of attack and fails to predict boundary layer transition or separation bubbles. Discrepancies are observed in the predictions of airfoil stall by both the models. Reasons for the discrepancies between computational and experimental results, and also possible improvements in eddy-viscosity models, are discussed.


1963 ◽  
Vol 67 (636) ◽  
pp. 783-790 ◽  
Author(s):  
Julian W. Ward

SummaryA survey of information on laminar separation bubbles and their effect on the stalling characteristics of aerofoils is presented. It is shown that there are two principal kinds of bubbles and that their existence can be predicted. It is believed that their behaviour may be related to the kind of boundary layer transition process present.It is intended that a second part of this paper will describe the characteristics of aerofoils at Reynolds numbers typical of model aircraft and show how the observed phenomena are related to the behaviour of laminar separation bubbles.


Author(s):  
Richard D. Sandberg ◽  
Richard Pichler ◽  
Liwei Chen ◽  
Roderick Johnstone ◽  
Vittorio Michelassi

Modern low pressure turbines (LPT) feature high pressure ratios and moderate Mach and Reynolds numbers, increasing the possibility of laminar boundary-layer separation on the blades. Upstream disturbances including background turbulence and incoming wakes have a profound effect on the behavior of separation bubbles and the type/location of laminar-turbulent transition and therefore need to be considered in LPT design. URANS are often found inadequate to resolve the complex wake dynamics and impact of these environmental parameters on the boundary layers and may not drive the design to the best aerodynamic efficiency. LES can partly improve the accuracy, but has difficulties in predicting boundary layer transition and capturing the delay of laminar separation with varying inlet turbulence levels. Direct Numerical Simulation (DNS) is able to overcome these limitations but has to date been considered too computationally expensive. Here a novel compressible DNS code is presented and validated, promising to make DNS practical for LPT studies. Also, the sensitivity of wake loss coefficient with respect to freestream turbulence levels below 1% is discussed.


Author(s):  
Andrea Cattanei ◽  
Pietro Zunino ◽  
Thomas Schro¨der ◽  
Bernd Stoffel ◽  
Berthold Matyschok

In the framework of a co-operation between the University of Genoa and the Darmstadt University of Technology measurement data of a former investigation at Darmstadt, comprising measurements with surface-mounted hot-film sensors on the boundary layer transition in wake disturbed flow, were transferred to Genoa, then re-evaluated and in great detail analyzed, much further than the original data evaluation. In these experimental investigations at Darmstadt, the boundary layer transition with and without transitional separation bubbles was studied on a circular cylinder in cross flow. The comparison of hot-wire traverses with the surface-mounted hot-film distributions clearly indicated that the surface-mounted hot-film technique is a very suitable measurement technique to obtain reliable information on transition and separation phenomena with both high spatial and temporal resolution. The new data evaluation techniques applied to these data at Genoa further enhanced the insight into the details of the boundary layer transition and separation process. The surface-mounted hot-film data were evaluated by means of time-space diagrams for the first three statistical moments (mean, RMS and skewness), with which the origin and the extent of unsteady separation bubbles clearly could be seen. The results obtained from these data analyses on the one hand yield a considerable enhancement of the understanding of the periodically unsteady boundary layer transition process and on the other hand they form the basis for the application of surface-mounted hot-film sensors in more complex flow situations like e.g. in cold flow multistage turbine or compressor test rigs or even in the hostile environment of real aero engine compressors or turbines.


2010 ◽  
Vol 132 (2) ◽  
Author(s):  
J. P. Bons

The effects of surface roughness on gas turbine performance are reviewed based on publications in the open literature over the past 60 years. Empirical roughness correlations routinely employed for drag and heat transfer estimates are summarized and found wanting. No single correlation appears to capture all of the relevant physics for both engineered and service-related (e.g., wear or environmentally induced) roughness. Roughness influences engine performance by causing earlier boundary layer transition, increased boundary layer momentum loss (i.e., thickness), and/or flow separation. Roughness effects in the compressor and turbine are dependent on Reynolds number, roughness size, and to a lesser extent Mach number. At low Re, roughness can eliminate laminar separation bubbles (thus reducing loss) while at high Re (when the boundary layer is already turbulent), roughness can thicken the boundary layer to the point of separation (thus increasing loss). In the turbine, roughness has the added effect of augmenting convective heat transfer. While this is desirable in an internal turbine coolant channel, it is clearly undesirable on the external turbine surface. Recent advances in roughness modeling for computational fluid dynamics are also reviewed. The conclusion remains that considerable research is yet necessary to fully understand the role of roughness in gas turbines.


Author(s):  
W. J. Solomon

Multiple-element surface hot-film instrumentation has been used to investigate boundary layer development in the 2 stage Low Speed Research Turbine (LSRT). Measurements from instrumentation located along the suction surface of the second stage nozzle at mid-span are presented. These results contrast the unsteady, wake-induced boundary layer transition behaviour for various turbine configurations. The boundary layer development on two new turbine blading configurations with identical design vector diagrams but substantially different loading levels are compared with a previously published result. For the conventional loading (Zweifel coefficient) designs, the boundary layer transition occurred without laminar separation. At reduced solidity, wake-induced transition started upstream of a laminar separation line and an intermittent separation bubble developed between the wake-influenced areas. A turbulence grid was installed upstream of the LSRT turbine inlet to increase the turbulence level from about 1% for clean-inlet to about 5% with the grid. The effect of turbulence on the transition onset location was smaller for the reduced solidity design than the baseline. At the high turbulence level, the amplitude of the streamwise fluctuation of the wake-induced transition onset point was reduced considerably. By clocking the first stage nozzle row relative to the second, the alignment of the wake-street from the first stage nozzle with the suction surface of the second stage nozzle was varied. At particular wake clocking alignments, the periodicity of wake induced transition was almost completely eliminated.


Author(s):  
Antoine Ducoin ◽  
Jacques Andre´ Astolfi ◽  
Marie-Laure Gobert

In this paper, we investigate through an experimental approach the laminar to turbulent transition in the boundary-layer flow along a hydrofoil at a Reynolds number of 7.5 × 105, together with the vibrations of the hydrofoil induced by the transition. The latter is caused by a Laminar Separation Bubble (LSB) resulting from a laminar separation of the boundary-layer. The experiments, conducted in the hydrodynamic tunnel of the Research Institute of the French Naval Academy, are based on wall pressure and flow velocity measurements along a rigid hydrofoil, which enable a characterization of the Laminar Separation Bubble and the identification of a vortex shedding at a given frequency. Vibrations measurements are then carried out on a flexible hydrofoil in the same operating conditions. The results indicate that the boundary-layer transition induces important vibrations, whose characteristics in terms of frequency and amplitude depend on the vortex shedding frequency, and can be coupled with natural frequencies.


Sign in / Sign up

Export Citation Format

Share Document