SOUND FROM DOMESTIC AIR SOURCE HEAT PUMPS: A CASE STUDY

2020 ◽  
Keyword(s):  
2019 ◽  
Vol 233-234 ◽  
pp. 943-958 ◽  
Author(s):  
Laura Romero Rodríguez ◽  
Marcus Brennenstuhl ◽  
Malcolm Yadack ◽  
Pirmin Boch ◽  
Ursula Eicker

2018 ◽  
Vol 7 (3.32) ◽  
pp. 127
Author(s):  
Francisco Javier Díaz Perez ◽  
David Chinarro ◽  
M Rosa Pino Otín ◽  
Ricardo Díaz Martín ◽  
Adib Guardiola Mouhaffel

This article presents a management model and control of energy efficiency in hotels adapted to the consumption patterns that ensure the comfort requirements of customers and integrated into the environment of an intelligent tourist complex. The analysis of the hot water system (DHW) of two hotels in the Canary Islands (Spain) in relation to their occupation, yields a solution based on renewable energies using high temperature heat pumps with aerothermal dissipation and supported by boilers of existing LPG propane. The control by programmable automatons (PLC) integrated in a system of control and acquisition of data (SCADA) optimizes the systems to maintain the maximum accumulated energy during the periods of cheapest electric tariff, by means of a system of opening and closing of hydraulic Valves that It manages to adjust the demand of DHW consumption to achieve the highest energy accumulation during the hours with the cheapest electricity tariff. The result after two and a half years of activity registration is a faster return on investment due to the optimized energy management of the system, through the control of operating hours adjusted to the needs of customers and the hourly rate. It has also been predicted that during the estimated 12 years of the system will have saved more than € 1,179,737 and thermal 8,780,005 kWh in a hotel 1 and € 1,315,104 and thermal 9,522,301 kWh in the hotel 2. This model shown can be seen how economically and energetically very efficient.  


2021 ◽  
Vol 11 (1) ◽  
pp. 23
Author(s):  
Chris Ogwumike ◽  
Huda Dawood ◽  
Tariq Ahmed ◽  
Bjarnhedinn Gudlaugsson ◽  
Nashwan Dawood

This paper presents an assessment of the impacts of the different tools implemented within the inteGRIDy project through the analysis of key performance indicators (KPIs) that appropriately reflect the technical and economic domains of the inteGRIDy thematic pillars, comprising demand response and battery storage systems. The evaluation is based on improvements brought about by individual components of the inteGRIDy-enabled smart solution across the Isle of Wight (IOW) pilot site. The analyses and the interpretation of findings for the pilot use case evaluation are presented. The results indicate that the smart solution implementation across the IOW pilot site resulted in achieving the inteGRIDy set objectives. Overall, a 93% reduction in energy consumption, equivalent to 643 kWh was achieved, via the M7 energy storage system and heat pumps developed as part of inteGRIDy solution. Additionally, the grid efficiency and demand flexibility contribution to the distribution network operator (DNO)-triggered DR services, based on a 10% increase/decrease in demand, resulted in stabilizing the grid efficiency.


2020 ◽  
Vol 103 (2) ◽  
pp. 003685042092168
Author(s):  
Weisong Zhou ◽  
Peng Pei ◽  
Ruiyong Mao ◽  
Haibin Qian ◽  
Yanbing Hu ◽  
...  

In order to take advantage of different forms of heat pumps and to mitigate thermal imbalance underground caused by long-term operation of ground source heat pumps, hybrid ground source heat pump systems have received an increasing attention. In this research, based on the fact that abundant groundwater resources are commonly available in karst regions, a new strategy is introduced for selecting and determining hybrid ground source heat pump capacity. Five scenarios of hybrid ground source heat pump system coupling groundwater source heat pumps with other supplementary heat pumps are proposed in this article to provide appropriate options to eliminate heat buildup under different hydrogeologic conditions. Methodologies for sizing and selection are established. Then, a case study of techno-economic analysis was performed for a project in the karst region in South China. The results showed that these scenarios can effectively mitigate heat buildup, and under the hydrogeologic condition in the case study. Compared to the solo ground-coupled heat pump solution, the optimal solution (Solution 4 in this study) can reduce the annual costs by 16.10% and reduce the capital investment by 60%. Methodologies developed in this study are beneficial for selecting appropriate approaches to mitigate heat buildup and enhance competitiveness of ground source heat pumps.


2021 ◽  
Vol 238 ◽  
pp. 06004
Author(s):  
Ettore Stamponi ◽  
Nicola Lattanzi ◽  
Francesco Giorgini ◽  
Fabio Serpilli ◽  
Sergio Montelpare ◽  
...  

The object of this paper is the “Loccioni Leaf Lab”, an industrial nZEB connected to a thermal and electric smart grid. Having nZEB buildings connected to a smart grid offers the possibility of maximizing the benefits that can be obtained by optimal regulation of the grid itself, providing excellent economic and energy results. The case study, which hosts offices and workers operating on test benches, features high performance envelope, solar photovoltaic systems, groundwater heat pumps and a hightechnology control and monitoring system. In order to analyse HVAC-related energy consumptions, the building was modelled using DesignBuilder and EnergyPlus software. The annual dynamic simulations for the assessment of building thermal-energy performance were carried out using available monitored weather data (2019). The model was validated according to ASHRAE guidelines, comparing the outputs of the software with data collected and stored by Company internal database. In the validation process, mean indoor air temperatures of several zones and heating and cooling energy consumptions were considered as key outputs. The validated model has then been used to suggest optimization strategies and to analyse the results obtained with proposed interventions in terms of energy saving.


Author(s):  
Md. Nasimul Islam Maruf

The energy transition requires integration of different energy carriers, including electricity, heat, and transport sectors. Energy modeling methods and tools are essential to provide a clear insight into the energy transition. However, the methodologies often overlook the details of small-scale energy systems. The study states an innovative approach to facilitate sub-national energy systems with 100% renewable penetration and sectoral integration. An optimization model, OSeEM-SN, is developed under the Oemof framework. The model is validated using the case study of Schleswig-Holstein. The study assumes three scenarios representing 25%, 50%, and 100% of the total available biomass potentials. OSeEM-SN reaches feasible solutions without additional offshore wind investment, indicating that they can be reserved for supplying other states’ energy demand. The annual investment cost varies between 1.02 bn – 1.44 bn €/yr for the three scenarios. The electricity generation decreases by 17%, indicating that with high biomass-based combined heat and power plants, the curtailment from other renewable plants can be decreased. Ground source heat pumps dominate the heat mix; however, their installation decreases by 28% as the biomass penetrates fully into the energy mix. The validation confirms OSeEM-SN as a beneficial tool to examine different scenarios for sub-national energy systems.


Sign in / Sign up

Export Citation Format

Share Document