scholarly journals Geomechanical key parameters of the process of hydraulic fracturing propagation in fractured medium

Author(s):  
Rouhollah Basirat ◽  
Kamran Goshtasbi ◽  
Morteza Ahmadi

Hydraulic Fracturing (HF) is a well-stimulation technique that creates fractures in rock formations through the injection of hydraulically pressurized fluid. Because of the interaction between HF and Natural Fractures (NFs), this process in fractured reservoirs is different from conventional reservoirs. This paper focuses mainly on three effects including anisotropy in the reservoir, strength parameters of discontinuities, and fracture density on HF propagation process using a numerical simulation of Discrete Element Method (DEM). To achieve this aim, a comprehensive study was performed with considering different situations of in situ stress, the presence of a joint set, and different fracture network density in numerical models. The analysis results showed that these factors play a crucial role in HF propagation process. It also was indicated that HF propagation path is not always along the maximum principal stress direction. The results of the numerical models displayed that the affected area under HF treatment is decreased with increasing the strength parameters of natural fracture and decreasing fracture intensity.

Fluids ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 76
Author(s):  
Basirat ◽  
Goshtasbi ◽  
Ahmadi

Hydraulic fracturing (HF) treatment is performed to enhance the productivity in the fractured reservoirs. During this process, the interaction between HF and natural fracture (NF) plays a critical role by making it possible to predict fracture geometry and reservoir production. In this paper, interaction modes between HF and NF are simulated using the discrete element method (DEM) and effective parameters on the interaction mechanisms are investigated. The numerical results also are compared with different analytical methods and experimental results. The results showed that HF generally tends to cross the NF at an angle of more than 45° and a moderate differential stress (greater than 5 MPa), and the opening mode is dominated at an angle of fewer than 45°. Two effects of changing in the interaction mode and NF opening were also found by changing the strength parameters of NF. Interaction mode was changed by increasing the friction coefficient, while by increasing the cohesion of NF it was less opened under a constant injection pressure.


Geophysics ◽  
2002 ◽  
Vol 67 (3) ◽  
pp. 711-726 ◽  
Author(s):  
Feng Shen ◽  
Xiang Zhu ◽  
M. Nafi Toksöz

This paper attempts to explain the relationships between fractured medium properties and seismic signatures and distortions induced by geology‐related influences on azimuthal AVO responses. In the presence of vertically aligned fractures, the relationships between fracture parameters (fracture density, fracture aspect ratio, and saturated fluid content) and their seismic signatures are linked with rock physics models of fractured media. The P‐wave seismic signatures studied in this paper include anisotropic parameters (δ(v), (v), and γ(v)), NMO velocities, and azimuthal AVO responses, where δ(v) is responsible for near‐vertical P‐wave velocity variations, (v) defines P‐wave anisotropy, and γ(v) governs the degree of shearwave splitting. The results show that in gas‐saturated fractures, anisotropic parameters δ(v) and (v) vary with fracture density alone. However, in water‐saturated fractures δ(v) and (v) depend on fracture density and crack aspect ratio and are also related to Vp/VS and Vp of background rocks, respectively. Differing from δ(v) and (v), γ(v) is the parameter most related to crack density. It is insensitive to the saturated fluid content and crack aspect ratio. The P‐wave NMO velocities in horizontally layered media are a function of δ(v), and their properties are comparable with those of δ(v). Results from 3‐D finite‐difference modeling show that P‐wave azimuthal AVO variations do not necessarily correlate with the magnitude of fracture density. Our studies reveal that, in addition to Poisson's ratio, other elastic properties of background rocks have an effect on P‐wave azimuthal AVO variations. Varying the saturated fluid content of fractures can lead to azimuthal AVO variations and may greatly change azimuthal AVO responses. For a thin fractured reservoir, a tuning effect related to seismic wavelength and reservoir thickness can result in variations in AVO gradients and in azimuthal AVO variations. Results from instantaneous frequency and instantaneous bandwidth indicate that tuning can also lead to azimuthal variations in the rates of changes of the phase and amplitude of seismic waves. For very thin fractured reservoirs, the effect of tuning could become dominant. Our numerical results show that AVO gradients may be significantly distorted in the presence of overburden anisotropy, which suggests that the inversion of fracture parameters based on an individual AVO response would be biased unless this influence were corrected. Though P‐wave azimuthal AVO variations could be useful for fracture detection, the combination of other types of data is more beneficial than using P‐wave amplitude signatures alone, especially for the quantitative characterization of a fractured reservoir.


Processes ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 189
Author(s):  
Chen ◽  
Li ◽  
Wu ◽  
Kang

Hydraulic fracturing is a significant technique in petroleum engineering to enhance the production of shale gas or shale oil reservoir. The process of hydraulic fracturing is extremely complicated, referring to the deformation of solid formation, fluid flowing in the crack channel, and coupling the solid with fluid. Simulation of hydraulic fracturing and understanding the course of the mechanism is still a challenging task. In this study, two hydraulic fracturing models, including the Khristianovic–Geertsma–de Klerk (KGD) problem and the hydraulic fracture (HF) intersection with the natural fracture (NF), based on the zero thickness pore pressure cohesive zone (PPCZ) element with contact friction is established. The element can be embedded into the edges of other elements to simulate the fracture initiation and propagation. However, the mesh type of the elements near the PPCZ element has influences on the accuracy and propagation profile. Three common types of mesh, triangle mesh, quadrangle mesh, and deformed quadrangle mesh, are all investigated in this paper. In addition, the infinite boundary condition (IBC) is also discussed in these models. Simulation indicates that the results of pore pressure for zero toughness regime simulated by the triangle mesh are much lower than any others at the early injection time. Secondly, the problem of hydraulic fracturing should be better used with the infinite boundary element (IBE). Moreover, suggestions for crack intersection on the proper mesh type are also given. The conclusions included in this article can be beneficial to research further naturally fractured reservoirs.


2021 ◽  
Vol 9 ◽  
Author(s):  
Dezhi Qiu ◽  
Jun Zhang ◽  
Yinhe Lin ◽  
Jinchuan Liu ◽  
Minou Rabiei ◽  
...  

Accurate prediction of the fracture geometry before the operation of a hydraulic fracture (HF) job is important for the treatment design. Simplified planar fracture models, which may be applicable to predict the fracture geometry in homogeneous and continuous formations, fail in case of fractured reservoirs and laminated formations such as shales. To gain a better understanding of the fracture propagation mechanism in laminated formations and their vertical geometry to be specific, a series of numerical models were run using XSite, a lattice-based simulator. The results were studied to understand the impact of the mechanical properties of caprock and injection parameters on HF propagation. The tensile and shear stimulated areas were used to determine the ability of HF to propagate vertically and horizontally. The results indicated that larger caprock Young’s modulus increases the stimulated area (SA) in both vertical and horizontal directions, whereas it reduces the fracture aperture. Also, larger vertical stress anisotropy and tensile strength of caprock and natural interfaces inhibit the horizontal fracture propagation with an inconsiderable effect in vertical propagation, which collectively reduces the total SA. It was also observed that an increased fluid injection rate suppresses vertical fracture propagation with an insignificant effect on horizontal propagation. The dimensionless parameters defined in this study were used to characterize the transition of HF propagation behavior between horizontal and vertical HFs.


2011 ◽  
Vol 51 (1) ◽  
pp. 507 ◽  
Author(s):  
Mohammad Sarmadivaleh ◽  
Vamegh Rasouli ◽  
Noufal Kakode Shihab

Natural fractures play a vital role in the production of low permeability reservoirs when no stimulation techniques are used. The characteristics of natural fractures, together with their pattern that defines how they communicate with each other and to the wellbore, will govern how effectively they can contribute in production enhancement. In most occasions, however, hydraulic fracturing must be used as a remedy to have an economical production rate. Fraccing itself is a complicated process, but would be further complicated when it is practiced in a discontinuous medium. Depending on the properties of the natural fracture(s) and operational condition of the fraccing job, opening, offsetting, crossing or arresting are possible interactions that may happen when an induced fracture reaches a natural discontinuity. In this study, the simplest interaction case with an angle of approach of 90° was studied through both laboratory experiments and numerical modelling. The experiments were carried out under real-triaxial stress conditions using a true-triaxial stress cell (TTSC). Two cement blocks of 20 cm with artificially-made natural fractures were used in this study. The cuts in one sample were filled with weak glue, whereas stiff cement was used in the second sample. The results indicate the importance of interface filling material properties in dominating the interaction mechanism. The numerical models built to simulate these two lab scenarios used particle flow code 2D (PFC2D). The model was tuned and validated against the experimental observations and a good agreement observed between the results of the two approaches.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Kaikai Zhao ◽  
Pengfei Jiang ◽  
Yanjun Feng ◽  
Xiaodong Sun ◽  
Lixing Cheng ◽  
...  

Hydraulic fracturing has been extensively employed for permeability enhancement in low-permeability reservoirs. The geometry of the hydraulic fracture network (HFN) may have implications for the optimization of hydraulic fracturing operations. Various parameters, including the in situ stress, treatment parameters (injection rate and fluid viscosity), and orientation of natural fractures (NFs), can significantly affect the interactions between hydraulic fracture (HF) and NFs and the final HFN. In this study, a lattice-spring code was employed to determine the impact of various parameters on the geometry of the HFN. The modelling results indicated that with a large stress difference, the global orientation of the fracture propagation was restricted to the direction of maximum principal stress, and the number of fracture branches was reduced. The geometry of the HFN changed from circular to elliptical. In contrast, with an increase in the fluid viscosity/injection rate, the evolution of the geometry of the HFN exhibited the opposite trend. The global orientation of HF propagation tended to remain parallel to the direction of maximum principal stress, regardless of the branching and tortuosity of the fracture. The variations in the ratio of tensile fracture (HF) to shear fracture (shear slip on NF) can be significant, depending on the stress state, treatment parameters, and preexisting NF network, which determine the dominant stimulation mechanism. This study provides insight into the HF propagation in naturally fractured reservoirs.


2016 ◽  
Vol 4 (4) ◽  
pp. T485-T496 ◽  
Author(s):  
Ping Puyang ◽  
Arash Dahi Taleghani ◽  
Bhaba Sarker

Hydraulic fracturing has been the principal production enhancement technique in low-permeability reservoirs for the past few decades. Through core and outcrop studies, advanced logging tools, microseismic mapping and well testing analysis, the complexity of induced fracture network in the presence of natural fractures has been further elucidated. Although most natural fractures are cemented by precipitations due to diagenesis, they can be reactivated during fracturing treatments and serve as preferential paths for fracture growth and fluid flow. However, current technologies for posttreatment fracture analysis are incapable of accurately determining the induced fracture geometry or estimating the distribution of preexisting natural fractures. Despite significant advances in the numerical modeling of fractured reservoirs, those numerical models require detailed characterization of natural fractures, which is essentially impossible to obtain. Moreover, most modeling techniques could not incorporate posttreatment data to reflect actual reservoir characteristics. We have developed an integrated modeling workflow to estimate the actual characteristics of fracture populations based on formation evaluations, microseismic data, treatment data, and production history. A least-squares modeling approach is first used to define possible realizations of natural fractures from selected double-couple microseismic events. Forward modeling incorporating a discrete fracture network will subsequently be used for matching treatment data and screening generated fracture realizations. Reservoir simulation tools will also be used thereafter to match the production data to further evaluate the fitness of natural fracture realizations. Our workflow is able to integrate data from multiple aspects of the reservoir development process, and the results from this workflow will provide geologist and reservoir engineers a robust tool for modeling naturally fractured reservoirs.


2019 ◽  
Vol 59 (1) ◽  
pp. 166
Author(s):  
Mohammad Ali Aghighi ◽  
Raymond Johnson Jr. ◽  
Chris Leonardi

Improved hydraulic fracturing models can better inform operational decisions regarding production from low-permeability coals and ultimately convert currently classified contingent resources to reserves. Improving current modelling approaches requires identification and investigation of the challenges involved in modelling hydraulic fracture stimulation in complex eastern Australian cases where permeability systems and stress regimes can vary significantly. This study investigated differences among existing and emerging advanced hydraulic fracture models and codes including numerical methods used to model fluid and rock behaviours during treatments; the ability to contextualise structure, behaviour and interaction of natural fractures with the propagating hydraulic fracture (e.g. cleat or natural fracture fabric, discrete fracture networks and pressure-dependent leak-off); and their capabilities in handling simultaneously growing or complex fracture development. One finding is that the new generation of models or codes that fully or partially use particle-based numerical methods are more capable in handling complexities associated with hydraulic stimulation of naturally fractured reservoirs. However, the computational cost and time for these models may cause concerns, particularly when modelling large reservoirs and treatments. Based on these limitations, many of the advanced, industry preferred, commercial hydraulic fracture simulators still choose to incorporate limited complexities with regard to natural fractures or represent them mathematically or implicitly. This investigation also indicates that most emerging models provide better representation of natural fractures, visualisation and integration into workflows for completion or stimulation design.


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3852 ◽  
Author(s):  
Kiran Nandlal ◽  
Ruud Weijermars

Hydraulic fracturing for economic production from unconventional reservoirs is subject to many subsurface uncertainties. One such uncertainty is the impact of natural fractures in the vicinity of hydraulic fractures in the reservoir on flow and thus the actual drained rock volume (DRV). We delineate three fundamental processes by which natural fractures can impact flow. Two of these mechanisms are due to the possibility of natural fracture networks to possess (i) enhanced permeability and (ii) enhanced storativity. A systematic approach was used to model the effects of these two mechanisms on flow patterns and drained regions in the reservoir. A third mechanism by which natural fractures may impact reservoir flow is by the reactivation of natural fractures that become extensions of the hydraulic fracture network. The DRV for all three mechanisms can be modeled in flow simulations based on Complex Analysis Methods (CAM), which offer infinite resolution down to a micro-fracture scale, and is thus complementary to numerical simulation methods. In addition to synthetic models, reservoir and natural fracture data from the Hydraulic Fracturing Test Site (Wolfcamp Formation, Midland Basin) were used to determine the real-world impact of natural fractures on drainage patterns in the reservoir. The spatial location and variability in the DRV was more influenced by the natural fracture enhanced permeability than enhanced storativity (related to enhanced porosity). A Carman–Kozeny correlation was used to relate porosity and permeability in the natural fractures. Our study introduces a groundbreaking upscaling procedure for flows with a high number of natural fractures, by combining object-based and flow-based upscaling methods. A key insight is that channeling of flow through natural fractures left undrained areas in the matrix between the fractures. The flow models presented in this study can be implemented to make quick and informed decisions regarding where any undrained volume occurs, which can then be targeted for refracturing. With the method outlined in our study, one can determine the impact and influence of natural fracture sets on the actual drained volume and where the drainage is focused. The DRV analysis of naturally fractured reservoirs will help to better determine the optimum hydraulic fracture design and well spacing to achieve the most efficient recovery rates.


Sign in / Sign up

Export Citation Format

Share Document