scholarly journals Simulation of Hydraulic Fracturing Using Different Mesh Types Based on Zero Thickness Cohesive Element

Processes ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 189
Author(s):  
Chen ◽  
Li ◽  
Wu ◽  
Kang

Hydraulic fracturing is a significant technique in petroleum engineering to enhance the production of shale gas or shale oil reservoir. The process of hydraulic fracturing is extremely complicated, referring to the deformation of solid formation, fluid flowing in the crack channel, and coupling the solid with fluid. Simulation of hydraulic fracturing and understanding the course of the mechanism is still a challenging task. In this study, two hydraulic fracturing models, including the Khristianovic–Geertsma–de Klerk (KGD) problem and the hydraulic fracture (HF) intersection with the natural fracture (NF), based on the zero thickness pore pressure cohesive zone (PPCZ) element with contact friction is established. The element can be embedded into the edges of other elements to simulate the fracture initiation and propagation. However, the mesh type of the elements near the PPCZ element has influences on the accuracy and propagation profile. Three common types of mesh, triangle mesh, quadrangle mesh, and deformed quadrangle mesh, are all investigated in this paper. In addition, the infinite boundary condition (IBC) is also discussed in these models. Simulation indicates that the results of pore pressure for zero toughness regime simulated by the triangle mesh are much lower than any others at the early injection time. Secondly, the problem of hydraulic fracturing should be better used with the infinite boundary element (IBE). Moreover, suggestions for crack intersection on the proper mesh type are also given. The conclusions included in this article can be beneficial to research further naturally fractured reservoirs.

2019 ◽  
Vol 59 (1) ◽  
pp. 166
Author(s):  
Mohammad Ali Aghighi ◽  
Raymond Johnson Jr. ◽  
Chris Leonardi

Improved hydraulic fracturing models can better inform operational decisions regarding production from low-permeability coals and ultimately convert currently classified contingent resources to reserves. Improving current modelling approaches requires identification and investigation of the challenges involved in modelling hydraulic fracture stimulation in complex eastern Australian cases where permeability systems and stress regimes can vary significantly. This study investigated differences among existing and emerging advanced hydraulic fracture models and codes including numerical methods used to model fluid and rock behaviours during treatments; the ability to contextualise structure, behaviour and interaction of natural fractures with the propagating hydraulic fracture (e.g. cleat or natural fracture fabric, discrete fracture networks and pressure-dependent leak-off); and their capabilities in handling simultaneously growing or complex fracture development. One finding is that the new generation of models or codes that fully or partially use particle-based numerical methods are more capable in handling complexities associated with hydraulic stimulation of naturally fractured reservoirs. However, the computational cost and time for these models may cause concerns, particularly when modelling large reservoirs and treatments. Based on these limitations, many of the advanced, industry preferred, commercial hydraulic fracture simulators still choose to incorporate limited complexities with regard to natural fractures or represent them mathematically or implicitly. This investigation also indicates that most emerging models provide better representation of natural fractures, visualisation and integration into workflows for completion or stimulation design.


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3852 ◽  
Author(s):  
Kiran Nandlal ◽  
Ruud Weijermars

Hydraulic fracturing for economic production from unconventional reservoirs is subject to many subsurface uncertainties. One such uncertainty is the impact of natural fractures in the vicinity of hydraulic fractures in the reservoir on flow and thus the actual drained rock volume (DRV). We delineate three fundamental processes by which natural fractures can impact flow. Two of these mechanisms are due to the possibility of natural fracture networks to possess (i) enhanced permeability and (ii) enhanced storativity. A systematic approach was used to model the effects of these two mechanisms on flow patterns and drained regions in the reservoir. A third mechanism by which natural fractures may impact reservoir flow is by the reactivation of natural fractures that become extensions of the hydraulic fracture network. The DRV for all three mechanisms can be modeled in flow simulations based on Complex Analysis Methods (CAM), which offer infinite resolution down to a micro-fracture scale, and is thus complementary to numerical simulation methods. In addition to synthetic models, reservoir and natural fracture data from the Hydraulic Fracturing Test Site (Wolfcamp Formation, Midland Basin) were used to determine the real-world impact of natural fractures on drainage patterns in the reservoir. The spatial location and variability in the DRV was more influenced by the natural fracture enhanced permeability than enhanced storativity (related to enhanced porosity). A Carman–Kozeny correlation was used to relate porosity and permeability in the natural fractures. Our study introduces a groundbreaking upscaling procedure for flows with a high number of natural fractures, by combining object-based and flow-based upscaling methods. A key insight is that channeling of flow through natural fractures left undrained areas in the matrix between the fractures. The flow models presented in this study can be implemented to make quick and informed decisions regarding where any undrained volume occurs, which can then be targeted for refracturing. With the method outlined in our study, one can determine the impact and influence of natural fracture sets on the actual drained volume and where the drainage is focused. The DRV analysis of naturally fractured reservoirs will help to better determine the optimum hydraulic fracture design and well spacing to achieve the most efficient recovery rates.


2021 ◽  
Author(s):  
Nikita Vladislavovich Dubinya ◽  
Sergey Andreevich Tikhotskiy ◽  
Sergey Vladimirovich Fomichev ◽  
Sergey Vladimirovich Golovin

Abstract The paper presents an algorithm for the search of the optimal frilling trajectory for a deviated well which is applicable for development of naturally fractured reservoirs. Criterion for identifying the optimal trajectory is the feature of the current study – optimal trajectory is chosen from the perspective of maximizing the positive effect related to activation of natural fractures in well surrounding rock masses caused by changes of the rocks stress-strain state due to drilling process. Drilling of a deviated well is shown to lead to the process of natural fractures in the vicinity of the well becoming hydraulically conductive due to drilling. The paper investigates the main natural factors – tectonic stresses and fluid pressure – and drilling parameters – drilling trajectory and mud pressure – influencing the number and variety of natural fractures being activated due to drilling process. An algorithm of finding the optimal drilling parameters from the perspective of natural fractures activation is proposed as well. Different theoretical scenarios are considered to formulate the general recommendations on drilling trajectory choice according to estimations of stress state of the reservoir. These estimations can be provided based on results of three- and four-dimensional geomechanical modeling. Such modeling may be completed as well for constructing geomechanically consistent natural fracture model which can be used to optimize drilling trajectories during exploration and development of certain objects. The paper presents a detailed algorithm of constructing such fracture models and deviated wells trajectories optimization. The results presented in the paper and given recommendations may be used to enhance drilling efficiency for reservoirs characterized by considerable contribution of natural fractures into filtration processes.


2014 ◽  
Vol 488-489 ◽  
pp. 417-420 ◽  
Author(s):  
Xiao Xi Men ◽  
C.A. Tang ◽  
Zhi Hui Han

Hydraulic fracturing process in fractured rockmass which with an existing single natural fracture at its various conditions: its different angles and different lengths was simulated by using RFPA2D(2.0)-Flow version which adopts the finite element method and considers the heterogeneous characteristics of rock in meso-scale, creates seepage-stress-failure coupling model. The effect tendency of natural fractures angle and length on the seepage characteristics of fractured rockmass was given through the description of tensile fracture initiation and propagation in the rock specimens. The simulation results show that the effect of these two factors on fractures initiation, propagation and rockmass stability under the hydraulic fracturing could be remarkable.


GeoArabia ◽  
2001 ◽  
Vol 6 (1) ◽  
pp. 27-42
Author(s):  
Stephen J. Bourne ◽  
Lex Rijkels ◽  
Ben J. Stephenson ◽  
Emanuel J.M. Willemse

ABSTRACT To optimise recovery in naturally fractured reservoirs, the field-scale distribution of fracture properties must be understood and quantified. We present a method to systematically predict the spatial distribution of natural fractures related to faulting and their effect on flow simulations. This approach yields field-scale models for the geometry and permeability of connected fracture networks. These are calibrated by geological, well test and field production data to constrain the distributions of fractures within the inter-well space. First, we calculate the stress distribution at the time of fracturing using the present-day structural reservoir geometry. This calculation is based on a geomechanical model of rock deformation that represents faults as frictionless surfaces within an isotropic homogeneous linear elastic medium. Second, the calculated stress field is used to govern the simulated growth of fracture networks. Finally, the fractures are upscaled dynamically by simulating flow through the discrete fracture network per grid block, enabling field-scale multi-phase reservoir simulation. Uncertainties associated with these predictions are considerably reduced as the model is constrained and validated by seismic, borehole, well test and production data. This approach is able to predict physically and geologically realistic fracture networks. Its successful application to outcrops and reservoirs demonstrates that there is a high degree of predictability in the properties of natural fracture networks. In cases of limited data, field-wide heterogeneity in fracture permeability can be modelled without the need for field-wide well coverage.


Author(s):  
Rouhollah Basirat ◽  
Kamran Goshtasbi ◽  
Morteza Ahmadi

Hydraulic Fracturing (HF) is a well-stimulation technique that creates fractures in rock formations through the injection of hydraulically pressurized fluid. Because of the interaction between HF and Natural Fractures (NFs), this process in fractured reservoirs is different from conventional reservoirs. This paper focuses mainly on three effects including anisotropy in the reservoir, strength parameters of discontinuities, and fracture density on HF propagation process using a numerical simulation of Discrete Element Method (DEM). To achieve this aim, a comprehensive study was performed with considering different situations of in situ stress, the presence of a joint set, and different fracture network density in numerical models. The analysis results showed that these factors play a crucial role in HF propagation process. It also was indicated that HF propagation path is not always along the maximum principal stress direction. The results of the numerical models displayed that the affected area under HF treatment is decreased with increasing the strength parameters of natural fracture and decreasing fracture intensity.


Fluids ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 76
Author(s):  
Basirat ◽  
Goshtasbi ◽  
Ahmadi

Hydraulic fracturing (HF) treatment is performed to enhance the productivity in the fractured reservoirs. During this process, the interaction between HF and natural fracture (NF) plays a critical role by making it possible to predict fracture geometry and reservoir production. In this paper, interaction modes between HF and NF are simulated using the discrete element method (DEM) and effective parameters on the interaction mechanisms are investigated. The numerical results also are compared with different analytical methods and experimental results. The results showed that HF generally tends to cross the NF at an angle of more than 45° and a moderate differential stress (greater than 5 MPa), and the opening mode is dominated at an angle of fewer than 45°. Two effects of changing in the interaction mode and NF opening were also found by changing the strength parameters of NF. Interaction mode was changed by increasing the friction coefficient, while by increasing the cohesion of NF it was less opened under a constant injection pressure.


Sign in / Sign up

Export Citation Format

Share Document