scholarly journals Quantitative identification of crop disease and nitrogen-water stress in winter wheat using continuous wavelet analysis

Author(s):  
Wenjiang Huang ◽  
◽  
Junjing Lu ◽  
Huichun Ye ◽  
Weiping Kong ◽  
...  
2012 ◽  
Vol 11 (9) ◽  
pp. 1474-1484 ◽  
Author(s):  
Jing-cheng ZHANG ◽  
Lin YUAN ◽  
Ji-hua WANG ◽  
Wen-jiang HUANG ◽  
Li-ping CHEN ◽  
...  

2014 ◽  
Vol 12 (3) ◽  
pp. 876-882 ◽  
Author(s):  
Qingsong Guan ◽  
Wenjiang Huang ◽  
Jinling Zhao ◽  
Liangyun Liu ◽  
Dong Liang ◽  
...  

2016 ◽  
Vol 98 ◽  
pp. 39-45 ◽  
Author(s):  
Hui-fang Wang ◽  
Zhi-guo Huo ◽  
Guang-sheng Zhou ◽  
Qin-hong Liao ◽  
Hai-kuan Feng ◽  
...  

Sensors ◽  
2019 ◽  
Vol 20 (1) ◽  
pp. 20 ◽  
Author(s):  
Huiqin Ma ◽  
Wenjiang Huang ◽  
Yuanshu Jing ◽  
Stefano Pignatti ◽  
Giovanni Laneve ◽  
...  

Fusarium head blight in winter wheat ears produces the highly toxic mycotoxin deoxynivalenol (DON), which is a serious problem affecting human and animal health. Disease identification directly on ears is important for selective harvesting. This study aimed to investigate the spectroscopic identification of Fusarium head blight by applying continuous wavelet analysis (CWA) to the reflectance spectra (350 to 2500 nm) of wheat ears. First, continuous wavelet transform was used on each of the reflectance spectra and a wavelet power scalogram as a function of wavelength location and the scale of decomposition was generated. The coefficient of determination R2 between wavelet powers and the disease infestation ratio were calculated by using linear regression. The intersections of the top 5% regions ranking in descending order based on the R2 values and the statistically significant (p-value of t-test < 0.001) wavelet regions were retained as the sensitive wavelet feature regions. The wavelet powers with the highest R2 values of each sensitive region were retained as the initial wavelet features. A threshold was set for selecting the optimal wavelet features based on the coefficient of correlation R obtained via the correlation analysis among the initial wavelet features. The results identified six wavelet features which include (471 nm, scale 4), (696 nm, scale 1), (841 nm, scale 4), (963 nm, scale 3), (1069 nm, scale 3), and (2272 nm, scale 4). A model for identifying Fusarium head blight based on the six wavelet features was then established using Fisher linear discriminant analysis. The model performed well, providing an overall accuracy of 88.7% and a kappa coefficient of 0.775, suggesting that the spectral features obtained using CWA can potentially reflect the infestation of Fusarium head blight in winter wheat ears.


2019 ◽  
Vol 11 (14) ◽  
pp. 1684 ◽  
Author(s):  
Chao Zhang ◽  
Jiangui Liu ◽  
Taifeng Dong ◽  
Elizabeth Pattey ◽  
Jiali Shang ◽  
...  

Accurate information of crop growth conditions and water status can improve irrigation management. The objective of this study was to evaluate the performance of SAFYE (simple algorithm for yield and evapotranspiration estimation) crop model for simulating winter wheat growth and estimating water demand by assimilating leaf are index (LAI) derived from canopy reflectance measurements. A refined water stress function was used to account for high crop water stress. An experiment with nine irrigation scenarios corresponding to different levels of water supply was conducted over two consecutive winter wheat growing seasons (2013–2014 and 2014–2015). The calibration of four model parameters was based on the global optimization algorithms SCE-UA. Results showed that the estimated and retrieved LAI were in good agreement in most cases, with a minimum and maximum RMSE of 0.173 and 0.736, respectively. Good performance for accumulated biomass estimation was achieved under a moderate water stress condition while an underestimation occurred under a severe water stress condition. Grain yields were also well estimated for both years (R2 = 0.83; RMSE = 0.48 t∙ha−1; MRE = 8.4%). The dynamics of simulated soil moisture in the top 20 cm layer was consistent with field observations for all scenarios; whereas, a general underestimation was observed for total water storage in the 1 m layer, leading to an overestimation of the actual evapotranspiration. This research provides a scheme for estimating crop growth properties, grain yield and actual evapotranspiration by coupling crop model with remote sensing data.


2020 ◽  
Vol 291 ◽  
pp. 108061 ◽  
Author(s):  
Tengcong Jiang ◽  
Zihe Dou ◽  
Jian Liu ◽  
Yujing Gao ◽  
Robert W. Malone ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document