soil water stress
Recently Published Documents


TOTAL DOCUMENTS

127
(FIVE YEARS 24)

H-INDEX

19
(FIVE YEARS 3)

2022 ◽  
Vol 263 ◽  
pp. 107443
Author(s):  
Subham Mukherjee ◽  
Ramprosad Nandi ◽  
Arnab Kundu ◽  
Prasanta Kumar Bandyopadhyay ◽  
Arpita Nalia ◽  
...  

2022 ◽  
Vol 293 ◽  
pp. 110722
Author(s):  
Katherine Fraga Ruas ◽  
Danilo Força Baroni ◽  
Guilherme Augusto Rodrigues de Souza ◽  
Wallace de Paula Bernado ◽  
Jessica Sousa Paixão ◽  
...  

2021 ◽  
Vol 311 ◽  
pp. 108670
Author(s):  
Pietro Della Sala ◽  
Christian Cilas ◽  
Teresa E. Gimeno ◽  
Steven Wohl ◽  
Stephen Yaw Opoku ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
P. L. Vidale ◽  
G. Egea ◽  
P. C. McGuire ◽  
M. Todt ◽  
W. Peters ◽  
...  

Current land surface schemes in weather and climate models make use of the so-called coupled photosynthesis–stomatal conductance (A–gs) models of plant function to determine the surface fluxes that govern the terrestrial energy, water and carbon budgets. Plant physiology is controlled by many environmental factors, and a number of complex feedbacks are involved, but soil moisture control on root water uptake is primary, particularly in sub-tropical to temperate ecosystems. Land surface models represent plant water stress in different ways, but most implement a water stress factor, β, which ranges linearly (more recently also curvilinearly) between β = 1 for unstressed vegetation and β = 0 at the wilting point, expressed in terms of volumetric water content (θ).  β is most commonly used to either limit A or gs, and hence carbon and water fluxes, and a pertinent research question is whether these treatments are in fact interchangeable. Following Egea et al. (Agricultural and Forest Meteorology, 2011, 151 (10), 1,370–1,384) and Verhoef et al. (Agricultural and Forest Meteorology, 2014, 191, 22–32), we have implemented new β treatments, reflecting higher levels of biophysical complexity in a state-of-the-art LSM, Joint UK Land Environment Simulator, by allowing root zone soil moisture to limit plant function non-linearly and via individual routes (carbon assimilation, stomatal conductance, or mesophyll conductance) as well as any (non-linear) combinations thereof. The treatment of β does matter to the prediction of water and carbon fluxes: this study demonstrates that it represents a key structural uncertainty in contemporary LSMs, in terms of predictions of gross primary productivity, energy fluxes and soil moisture evolution, both in terms of climate means and response to a number of European droughts, including the 2003 heat wave. Treatments allowing ß to act on vegetation fluxes via stomatal and mesophyll routes are able to simulate the spatiotemporal variability in water use efficiency with higher fidelity during the growing season; they also support a broader range of ecosystem responses, e.g., those observed in regions that are radiation limited or water limited. We conclude that current practice in weather and climate modelling is inconsistent, as well as too simplistic, failing to credibly simulate vegetation response to soil water stress across the typical range of variability that is encountered for current European weather and climate conditions, including extremes of land surface temperature and soil moisture drought. A generalized approach performs better in current climate conditions and promises to be, based on responses to recently observed extremes, more trustworthy for predicting the impacts of climate change.


2021 ◽  
Vol 25 (8) ◽  
pp. 4259-4274
Author(s):  
Brandon P. Sloan ◽  
Sally E. Thompson ◽  
Xue Feng

Abstract. Plant transpiration downregulation in the presence of soil water stress is a critical mechanism for predicting global water, carbon, and energy cycles. Currently, many terrestrial biosphere models (TBMs) represent this mechanism with an empirical correction function (β) of soil moisture – a convenient approach that can produce large prediction uncertainties. To reduce this uncertainty, TBMs have increasingly incorporated physically based plant hydraulic models (PHMs). However, PHMs introduce additional parameter uncertainty and computational demands. Therefore, understanding why and when PHM and β predictions diverge would usefully inform model selection within TBMs. Here, we use a minimalist PHM to demonstrate that coupling the effects of soil water stress and atmospheric moisture demand leads to a spectrum of transpiration responses controlled by soil–plant hydraulic transport (conductance). Within this transport-limitation spectrum, β emerges as an end-member scenario of PHMs with infinite conductance, completely decoupling the effects of soil water stress and atmospheric moisture demand on transpiration. As a result, PHM and β transpiration predictions diverge most for soil–plant systems with low hydraulic conductance (transport-limited) that experience high variation in atmospheric moisture demand and have moderate soil moisture supply for plants. We test these minimalist model results by using a land surface model at an AmeriFlux site. At this transport-limited site, a PHM downregulation scheme outperforms the β scheme due to its sensitivity to variations in atmospheric moisture demand. Based on this observation, we develop a new “dynamic β” that varies with atmospheric moisture demand – an approach that overcomes existing biases within β schemes and has potential to simplify existing PHM parameterization and implementation.


Author(s):  
Guodong Jia ◽  
Lixin Chen ◽  
Xinxiao Yu ◽  
Ziqiang Liu

The counteractive influence of atmospheric CO2 enrichment and drought stress on tree growth results in great uncertainty in growth patterns of planted forests in cold semi-arid regions. We used tree-ring chronology and carbon isotope analysis to track ecophysiological processes in reaction to environmental factors over the past four decades of Populus simonii plantations in cold semi-arid areas in northern China. Our results showed that the boosting effect of the rising atmospheric CO2 concentration (Ca) on iWUE and stem growth was more significant in declined stands. However, the increased iWUE did not negate tree dieback when water stress was present. Therefore, the BAI and iWUE deviation of different health status trees started from a very early age. Climatic factors showed limited influences on the stem growth of the poplar plantations. The inaccessibility of deep soil water due to site-specific soil conditions rendered the trees exposed to chronic soil water stress and constrained stomatal conductance and reduced the CO2 fertilization effect. Consequently, these stands experienced a lower stem growth rate. In summary, we suggest that soil moisture conditions the iWUE and growth sensitivity to global warming and thus portrays site-specific decline episodes of different degrees in drought-prone areas.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 563
Author(s):  
Esther Anokye ◽  
Samuel T. Lowor ◽  
Jerome A. Dogbatse ◽  
Francis K. Padi

With increasing frequency and intensity of dry spells in the cocoa production zones of West Africa, strategies for mitigating impact of water stress on cocoa seedling survival are urgently required. We investigated the effects of applied potassium on biomass accumulation, physiological processes and survival of cocoa varieties subjected to water stress in pot experiments in a gauzehouse facility. Four levels of potassium (0, 1, 2, or 3 g/plant as muriate of potash) were used. Soil water stress reduced plant biomass accumulation (shoot and roots), relative water content (RWC), chlorophyll content and fluorescence. Leaf phenol and proline contents were increased under water stress. Additionally, compared to the well-watered conditions, soils under water stress treatments had higher contents of exchangeable potassium and available phosphorus at the end of the experimental period. Potassium applied under well-watered conditions reduced leaf chlorophyll content and fluorescence and increased leaf electrolyte leakage, but improved the growth and integrity of physiological functions under soil water stress. Potassium addition increased biomass partitioning to roots, improved RWC and leaf membrane stability, and significantly improved cocoa seedling survival under water stress. Under water stress, the variety with the highest seedling mortality accumulated the highest contents of phenol and proline. A significant effect of variety on plant physiological functions was observed. Generally, varieties with PA 7 parentage had higher biomass partitioning to roots and better seedling survival under soil moisture stress. Proportion of biomass partitioned to roots, RWC, chlorophyll fluorescence and leaf electrolyte leakage appear to be the most reliable indicators of cocoa seedling tolerance to drought.


2021 ◽  
Author(s):  
Rodolfo Nóbrega ◽  
Iain Colin Prentice

<p>Plant roots have less water available when soils have low moisture content and, consequently, limit their root-to-leaf water potential gradient to protect their xylem, which reduces H<sub>2</sub>O and CO<sub>2</sub> exchanges with the atmosphere. In vegetation, hydrological and land-surface models, plant responses to reduced available water in the soil have been implemented in various ways depending on data availability, type of ecosystem, and modelling assumptions. Most models use soil water stress functions – commonly known as beta functions – to reduce transpiration and carbon assimilation, by applying a factor that reflects the soil water availability for plants. These functions usually produce reasonably satisfactory results, but rely on the information on soil properties (e.g. wilting point and field capacity) that are not widely available. On a global level, soil information is mediocre, and data uncertainty is compensated by tuning parameters that rarely represent a physiological process. We propose instead the use of a beta function derived from a mass-balance approach focused on the root zone water capacity. This method quantifies the root zone water storage by calculating the accumulated water deficit based on the balance between water influxes and effluxes, and it does not require land-cover or soil information. We assessed how our approach performs compared to those other soil water stress functions. We used global datasets, including WDFE5 and PMLv2, to extract precipitation and evapotranspiration and compute water deficit. For most vegetation types and climates our approach yielded promising results. Worst results were found for some (semi-)arid sites due to the overestimation of the water deficit. We aim to deliver an approach that can be easily applied on global scales.</p>


2021 ◽  
Author(s):  
Brandon P. Sloan ◽  
Sally E. Thompson ◽  
Xue Feng

Abstract. Plant transpiration downregulation in the presence of soil water stress is a critical mechanism for predicting global water, carbon, and energy cycles. Currently, many terrestrial biosphere models (TBMs) represent this mechanism with an empirical correction function (β) of soil moisture – a convenient approach that can produce large prediction uncertainties. To reduce this uncertainty, TBMs have increasingly incorporated physically-based Plant Hydraulic Models (PHMs). However, PHMs introduce additional parameter uncertainty and computational demands. Therefore, understanding why and when PHM and β predictions diverge would usefully inform model selection within TBMs. Here, we use a minimalist PHM to demonstrate that coupling the effects of soil water stress and atmospheric moisture demand leads to a spectrum of transpiration response controlled by soil-plant hydraulic transport (conductance). Within this transport-limitation spectrum, β emerges as an end-member scenario of PHMs with infinite conductance, completely decoupling the effects of soil water stress and atmospheric moisture demand on transpiration. As a result, PHM and β transpiration predictions diverge most when conductance is low (transport-limited), atmospheric moisture demand variation is high, and soil moisture is moderately available to plants. We apply these minimalist model results to land surface modeling of an Ameriflux site. At this transport-limited site, a PHM downregulation scheme outperforms the β scheme due to its sensitivity to variations in atmospheric moisture demand. Based on this observation, we develop a new dynamic β that varies with atmospheric moisture demand – an approach that balances realism with parsimony and overcomes existing biases within β schemes.


Sign in / Sign up

Export Citation Format

Share Document