scholarly journals Application and optimization of solid-state fermentation process for enhancing polygalacturonase production by Penicillium expansum

Author(s):  
Mingming Zhu ◽  
◽  
Hongju He ◽  
Mingtao Fan ◽  
Hanjun Ma ◽  
...  
2019 ◽  
Vol 3 (2) ◽  
pp. 71-77
Author(s):  
Rosa Dorta-Vásquez ◽  
Oscar Valbuena ◽  
Domenico Pavone-Maniscalco

Abstract Paper production generates large quantities of a solid waste known as papermaking sludge (PS), which needs to be handled properly for final disposal. The high amount of this byproduct creates expensive economical costs and induces environmental and ecological risks. Therefore, it is necessary to search uses for PS, in order to reduce the negative environmental impact and to generate a more valuable byproduct. Due to the cellulolytic composition of PS, this work evaluated a solid state fermentation process using it as substrate to obtain spores of the fungus Trichoderma asperellum. Optimal conditions to obtain T. asperellum spores were: 60% water content, 3% (w/w) salts (Nutrisol P® and Nutrisol K®), inoculum concentration at 1x105 spores/g, and pasteurized or sterilized PS. Under these conditions it was possible to obtain 2.37x109 spores/g. T. asperellum spores applied directly to pepper (Capsicum anuum) seeds without PS increased significantly seedling dry mass in greenhouse assays. This work suggests an alternative, economic and abundant substrate for production of T. asperellum spores.


2018 ◽  
Vol 81 (1) ◽  
Author(s):  
Halifah Pagarra ◽  
Roshanida A. Rahman ◽  
Nur Izyan Wan Azelee ◽  
Rosli Md Illias

Polygalacturonases represent an important member of pectinases group of enzymes with immense industrial applications. The activity of exo-polygalacturonase produced by Aspergillus niger was studied in solid state fermentation (SSF) using Nephrolepis biserrata leaves as substrate. Central composite design (CCD) was used to optimize four significant variables resulted from the screening process that has been initially analyzed for the production of exo-polygalacturonase which are incubation time, temperature, concentration of pectin and moisture content. The optimum exo-polygalacturonase production obtained was 54.64 U/g at 120 hours of incubation time, temperature at 340C, 5.0 g/L of pectin concentration and 75.26% of moisture content. For partial characterization of exo-polygalacturonase, the optimum temperature and pH were obtained at 50°C and pH 4.0, respectively. SDS-PAGE analysis showed that molecular weight of exo-polygalacturonase were 35 and 71 kDa. This study has revealed a significant production of exo-polygalacturonase by A. niger under SSF using cheap and easily available substrate and thus could found immense potential application in industrial sectors and biotechnology


2019 ◽  
Vol 82 ◽  
pp. 218-230 ◽  
Author(s):  
Raffaella Di Cagno ◽  
Pasquale Filannino ◽  
Vincenzo Cantatore ◽  
Marco Gobbetti

2004 ◽  
Vol 47 (5) ◽  
pp. 813-819 ◽  
Author(s):  
Natalia Martin ◽  
Simone Regina de Souza ◽  
Roberto da Silva ◽  
Eleni Gomes

Pectin lyase and polygalacturonase production by newly isolated fungal strains was carried out in solid-state fermentation. Moniliella SB9 and Penicillium sp EGC5 produced polygalcturonase (PG) and pectin lyase (PL) on mixture of orange bagasse, sugar cane bagasse and wheat bran as substrate. PG and PL produced by Moniliella presented optimum activity at pH 4.5 and 10.0 and at 55 and 45°C, respectively, while these enzymes from Penicillium sp presented optimum activity at pH 4.5-5.0 and 9.0 and 40°C, respectively.


2007 ◽  
Vol 50 (5) ◽  
pp. 759-766 ◽  
Author(s):  
Jorge Alberto Vieira Costa ◽  
Eliane Colla ◽  
Glênio Magagnin ◽  
Lucielen Oliveria dos Santos ◽  
Mauricio Vendruscolo ◽  
...  

Amyloglucosidase (AMG) and exo-polygalacturonase (exo-PG) were simultaneously produced by two different strains of Aspergillus niger in solid-state fermentation (SSF) using defatted rice-bran as substrate. The effect of Aspergillus niger strain (t0005/007-2 and/or CCT 3312), inoculum type (spore suspension or fermented bran) and addition of inducers (pectin and/or starch) to the culture media was studied using a 3² x 2¹ factorial experimental design. The production of AMG and exo-PG was significantly affected by fungal strain and inoculum type but inducers had no effect. The maximum yields obtained were 1310 U/g dm for AMG using a spore suspension of A. niger CCT 3312 and 50.2 U/g dm for exo-PG production, using A. niger t0005/007-2 and fermented bran as inoculum. The yields obtained represented acceptable values in comparison with data available in the literature and indicated that defatted rice-bran was a good nutrient source.


Author(s):  
Rosa Amarilis Rodríguez Frómeta ◽  
José Laencina Sánchez ◽  
José María Ros García

The purpose of this research is to evaluate the coffee pulp, a by-product of coffee processing, as substrate for polygalacturonase production by solid state fermentation. In addition, it is a way to take advantage of the coffee pulp. Characterization of the coffee pulp revealed a high content of nutrients for fungi growth, such as reducing sugars (5.4% of dry pulp), proteins (9.4% of dry pulp), pectins (20.5% of dry pulp), which are inducers of pectic hydrolases production and source of carbon after degradation, and caffeine (1.4% of dry pulp), among others. The characterization of the cell-wall of coffee pulp revealed, after polysaccharides fractionation, the content in cell-wall pectins (25.5%), hemicelluloses (11.5%) and cellulosic residue (44%). A strain of Aspergillus niger, called van Thiegem, has been selected as a good producer of polygalacturonases (60 U/ml) using the coffee pulp as the growth substrate. During fermentation, reducing sugars, caffeine and phenolic compounds were consumed till almost exhaustion. A partial characterization of the polygalacturonase using high methoxyl pectin as substrate indicates an optimal pH of 4.0 and 45oC as optimal temperature, which are good values for the use of the enzyme in vegetable processing, including coffee processing.


Sign in / Sign up

Export Citation Format

Share Document