scholarly journals Pectinase production by fungal strains in solid-state fermentation using agro-industrial bioproduct

2004 ◽  
Vol 47 (5) ◽  
pp. 813-819 ◽  
Author(s):  
Natalia Martin ◽  
Simone Regina de Souza ◽  
Roberto da Silva ◽  
Eleni Gomes

Pectin lyase and polygalacturonase production by newly isolated fungal strains was carried out in solid-state fermentation. Moniliella SB9 and Penicillium sp EGC5 produced polygalcturonase (PG) and pectin lyase (PL) on mixture of orange bagasse, sugar cane bagasse and wheat bran as substrate. PG and PL produced by Moniliella presented optimum activity at pH 4.5 and 10.0 and at 55 and 45°C, respectively, while these enzymes from Penicillium sp presented optimum activity at pH 4.5-5.0 and 9.0 and 40°C, respectively.

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Oliyad Jeilu Oumer ◽  
Dawit Abate

The request for enzymes in the global market is expected to rise at a fast pace in recent years. With this regard, there has been a great increase in industrial applications of pectinase owing to their significant biotechnological uses. This study was undertaken with main objectives of meeting the growing industrial demands of pectinase, by improving the yield without increasing the cost of production. In addition, this research highlights the underestimated potential of agroresidues for the production of biotechnologically important products. In this study, the maximum pectinase production attained was using wheat bran, among the tested agroresidues. The production of pectinase was improved from 10.1 ± 1.4 U/ml to 66.3 ± 1.2 U/ml in submerged fermentation whereas it was in solid state fermentation from 800.0 ± 16.2 U/g to 1272.4 ± 25.5 U/g. The maximum pectinase production was observed using YEP (submerged fermentation) and wheat bran (solid state fermentation) at initial pH of 6.5, at 37°C and by supplementing the medium with 3 mM MgSO4.7H2O.


2016 ◽  
Vol 4 (1) ◽  
pp. 67 ◽  
Author(s):  
Bijay Sethi ◽  
Amrita Satpathy ◽  
Subodh Tripathy ◽  
Sidarth Parida ◽  
Sameer Kumar Singdevsachan ◽  
...  

Aspergillus terreus NCFT 4269.10 was evaluated by liquid static surface fermentation (LSSF), shaking fermentation (ShF) and solid state fermentation (SSF) for the production of pectinase. Among various substrates tested, banana peels supported maximum production of pectinase i.e. 1000 ± 141.42 U/ml. The biomass of A. terreus was maximum with wheat bran (0.55±0.07g/50ml). Pectinase produced by A. terreus displayed higher specific activity when wheat bran was used as the sole source of carbon and energy. After successful fermentation, crude enzyme was purified to electrophoretic homogeneity with a specific activity of 1846.50 U/mg from an initial specific activity of 1282.05 U/mg. The cell free-dialyzed-enzyme containing 107100 U was purified to 1.44 fold with an overall enzyme yield of 35.70%.Immobilization study revealed that the production of pectinase was increased up to third cycle and decreased thereafter when further pectinase production was carried out by immobilized spores of A. terreus.


2020 ◽  
pp. 103159
Author(s):  
Sonja Jakovetić Tanasković ◽  
Nataša Šekuljica ◽  
Jelena Jovanović ◽  
Ivana Gazikalović ◽  
Sanja Grbavčić ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Hamid Mukhtar ◽  
Ikramul Haq

The present study describes the screening of different agroindustrial byproducts for enhanced production of alkaline protease by a wild and EMS induced mutant strain ofBacillus subtilisIH-72EMS8. During submerged fermentation, different agro-industrial byproducts were tested which include defatted seed meals of rape, guar, sunflower, gluten, cotton, soybean, and gram. In addition to these meals, rice bran, wheat bran, and wheat flour were also evaluated for protease production. Of all the byproducts tested, soybean meal at a concentration of 20 g/L gave maximum production of the enzyme, that is, 5.74  ±  0.26 U/mL from wild and 11.28  ±  0.45 U/mL from mutant strain, during submerged fermentation. Different mesh sizes (coarse, medium, and fine) of the soybean meal were also evaluated, and a finely ground soybean meal (fine mesh) was found to be the best. In addition to the defatted seed meals, their alkali extracts were also tested for the production of alkaline protease byBacillus subtilis, but these were proved nonsignificant for enhanced production of the enzyme. The production of the enzyme was also studied in solid state fermentation, and different agro-industrial byproducts were also evaluated for enzyme production. Wheat bran partially replaced with guar meal was found as the best substrate for maximum enzyme production under solid state fermentation conditions.


2003 ◽  
Vol 32 (2) ◽  
pp. 246-251 ◽  
Author(s):  
Sandro Germano ◽  
Ashok Pandey ◽  
Clarice A. Osaku ◽  
Saul N. Rocha ◽  
Carlos R. Soccol

2018 ◽  
Vol 81 (1) ◽  
Author(s):  
Halifah Pagarra ◽  
Roshanida A. Rahman ◽  
Nur Izyan Wan Azelee ◽  
Rosli Md Illias

Polygalacturonases represent an important member of pectinases group of enzymes with immense industrial applications. The activity of exo-polygalacturonase produced by Aspergillus niger was studied in solid state fermentation (SSF) using Nephrolepis biserrata leaves as substrate. Central composite design (CCD) was used to optimize four significant variables resulted from the screening process that has been initially analyzed for the production of exo-polygalacturonase which are incubation time, temperature, concentration of pectin and moisture content. The optimum exo-polygalacturonase production obtained was 54.64 U/g at 120 hours of incubation time, temperature at 340C, 5.0 g/L of pectin concentration and 75.26% of moisture content. For partial characterization of exo-polygalacturonase, the optimum temperature and pH were obtained at 50°C and pH 4.0, respectively. SDS-PAGE analysis showed that molecular weight of exo-polygalacturonase were 35 and 71 kDa. This study has revealed a significant production of exo-polygalacturonase by A. niger under SSF using cheap and easily available substrate and thus could found immense potential application in industrial sectors and biotechnology


Sign in / Sign up

Export Citation Format

Share Document