scholarly journals Measurement of total normal length of helical cylindrical gears by three-axis indicator on five-axis CNC machine

2021 ◽  
pp. 13-19
Author(s):  
A. G. Kondrashov ◽  
◽  
D. T. Safarov ◽  

The article discusses a method for automated measurement of the length of the general normal of a helical cylindrical wheel, which allows to obtain its exact value without removing the part after gear processing with disk or end mills. The measurements are carried out by means of an automated supply of a three-coordinate linear measurement indicator to the calculated measurement points. The formulas for calculating the length of the general normal are given, which allow calculating the value of the length of the general normal and the correction value of the CNC gear ring processing program for two and one-point measurement schemes with the indicator. The use of the two-point method of measuring the length of the general normal with a three-coordinate indicator made it possible to measure the length of the general normal without removing the processed gear wheel from the mandrel, the single-point method completely eliminates the possibility of adjustment defects and reduces the complexity of carrying out machine changeovers in the mode of single and small-scale processing of gears. Comparison of gear measurement data with the three-coordinate indicator Mahr and a specialized CNC gear measuring machine give similar values and confirm the possibility of using the developed scheme to measure the length of the common normal

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2913
Author(s):  
Rafał Gołębski ◽  
Piotr Boral

Classic methods of machining cylindrical gears, such as hobbing or circumferential chiseling, require the use of expensive special machine tools and dedicated tools, which makes production unprofitable, especially in small and medium series. Today, special attention is paid to the technology of making gears using universal CNC (computer numerical control) machine tools with standard cheap tools. On the basis of the presented mathematical model, a software was developed to generate a code that controls a machine tool for machining cylindrical gears with straight and modified tooth line using the multipass method. Made of steel 16MnCr5, gear wheels with a straight tooth line and with a longitudinally modified convex-convex tooth line were machined on a five-axis CNC milling machine DMG MORI CMX50U, using solid carbide milling cutters (cylindrical and ball end) for processing. The manufactured gears were inspected on a ZEISS coordinate measuring machine, using the software Gear Pro Involute. The conformity of the outline, the tooth line, and the gear pitch were assessed. The side surfaces of the teeth after machining according to the planned strategy were also assessed; the tests were carried out using the optical microscope Alicona Infinite Focus G5 and the contact profilographometer Taylor Hobson, Talysurf 120. The presented method is able to provide a very good quality of machined gears in relation to competing methods. The great advantage of this method is the use of a tool that is not geometrically related to the shape of the machined gear profile, which allows the production of cylindrical gears with a tooth and profile line other than the standard.


2014 ◽  
Vol 598 ◽  
pp. 189-193
Author(s):  
Hui Zhao ◽  
Yu Jun Cai ◽  
Guo He Li

In this paper, a very detailed process analysis for UAV integral impeller was made. According to the specific processing requirements, the appropriate CNC machine, blank and cutting tools have been choosing. In the rough machining process, various machining strategies have been used for comparing and analyzing, finally a more efficient roughing method with the accurate machining parameters will be obtained. At the same time the machining method have been improved and the processing parameters also have been determined in the semi-finishing process. Through the simulation processing in VERICUT, the possibility of the existence of interference which is usually occurred in the actual processing can be ruled out and the program optimization will be finished in the meantime. Finally, using intelligent three-coordinate measuring machine the consequence will be verified and inspected in the actual machining process.


Author(s):  
Haitao Zhang ◽  
Shugui Liu ◽  
Xinghua Li

REVO five-axis system, designed for the orthogonal coordinate measuring machines, must be reconfigured for the application in the non-orthogonal coordinate measuring machines. First, in this article, error sources of the system and components of measurement data are analyzed; then, scale values of coordinate measuring machine axes, which are essential to derive the coordinates of measured points in non-orthogonal coordinate measuring machine, are separated out. Besides, the mathematical model of REVO is established based on the quasi-rigid body theory, from which the measurement results can be evaluated by data derived instead of that returned by the system. The effectiveness of both separation of scale values and mathematical model of REVO is proved by experiments and practice. The research of this article is of great significance to the application of REVO five-axis system in the non-orthogonal coordinate measuring machine.


2021 ◽  
pp. 35-43
Author(s):  
D. T. Safarov ◽  
◽  
A. G. Kondrashov ◽  

The article provides an overview of studies of various errors in the process of measuring parts with three-coordinate probes on CNC machines. The paper considers a method for estimating systematic and random errors in the process of measuring the length of the base tangent using control maps and probabilistic and statistical methods for processing multiple repeated inputs of a three-coordinate indicator to the measured side surfaces of the wheel teeth. The method is designed to assess the acceptability of the measurement process by technologists and adjusters. The data of experimental estimation of random and systematic errors of measurement of the length of the base tangent on a five-coordinate CNC machine with a three-coordinate indicator of Mahr are presented. The obtained error values for the five-axis machine under study allow us to measure the length of the base tangent for the purposes of periodic monitoring and adjustment of the machine when processing oblique cylindrical wheels with universal disk or end mills


Author(s):  
Paolo Bosetti ◽  
Stefania Bruschi

Single-point incremental sheet forming processes represent today a promising alternative to traditional sheet forming operations for producing low batches or even prototypes without the use of expensive dies. Several investigations have been carried out in recent years to study the fundamental aspects of incremental sheet forming operations, with particular attention to determination of material formability. In this framework, the Authors propose to study the material tendency to be formed by incremental forming, called SPIFability, through different indicators, and to evaluate this tendency as a function of the process parameters, with particular regard to the relative velocity between the tool and the blank. Other reported studies — based on both experimental and numerical studies — have tried to give a comprehensive explanation of the deformation mechanisms that arise during incremental sheet forming, and that possibly affect the material formability. However, none of the proposed theories are today fully accepted by the scientific community. In order to study the relevant deformation mechanisms, the Authors propose to analyze the microstructural characteristics of the formed parts by means of optical microscopy and the fracture surfaces by means of scanning electron microscopy. The investigated case study is an axi-symmetric part characterized by a varying slope with depth, made from blanks of the aluminum alloy AA5182. The parts were formed on a CNC machine until the first crack appeared, and then were measured by means of a Coordinate Measuring Machine to evaluate their thickness profile and geometrical parameters.


Author(s):  
Yongjin Kwon

In-process part inspection using a spindle touch probe has gained a significant importance, mainly because parts can remain on the machine without disrupting the machine setup while inspection is being conducted. This practice leads to a shorter inspection time, improved part accuracies, and reduction of scraps. Recently, intense domestic and international competition has put more importance on part quality in terms of producing parts right the first time and maintaining the consistent quality standards. A literature review revealed that a comparative analysis between in-process gauging using a touch probe and post-process inspection using a coordinate measuring machine (CMM) to ascertain part quality has not been adequately studied. Therefore, there is a need for a study to measure the characteristics of the two inspection techniques. To address the problem, cutting experiments were conducted and measurement data were analyzed using a state-of-the-art CNC machine, a CMM, a touch probe, and a high-precision ballbar system. The experimental data show that machined features and touch probe measurements are affected by the inherent shortcomings in machine tool structure, suggesting a machine tool capability analysis be undertaken in tune with the required tolerance specifications prior to machining operations, rather than solely relying on the touch probe inspection for part quality assessment.


2020 ◽  
Vol 8 (6) ◽  
pp. 2789-2793

Laser triangulation 3D scanning machine is one of many types of 3D scanning technologies that are currently available in the current market. It is mainly use to capture object profiles as well as for measurement. Therefore, the measurement accuracy of laser triangulation 3D scanner was assessed and presented in paper. Three solid aluminum calibration block with known dimensions were fabricated by using CNC machine and these samples were named based on its profiles which are round, square and complex. Besides the laser triangulation 3D scanning machine, two more measuring equipment which are Vernier caliper and coordinate measuring machine were used as benchmarks. Three profiles were chose for each calibration block samples that made up of 9 profiles that have been measured and the deviation between the measuring values were analyzed. The results shown that the lowest deviation values for most of the profiles are from coordinate measuring machine and Vernier caliper measurement data. Nevertheless, the measurement deviation for laser triangulation 3D scanner are found to be comparable with other equipment.


Author(s):  
Zhiyong Chang ◽  
Jinan Wen ◽  
Zezhong C. Chen ◽  
Dinghua Zhang

As an important component of gas turbine engines, a blisk (or an axial compressor) is complex in shape. The pressure and suction surfaces of the blisk blades are designed with free-form surfaces, and the space (or the channel) between two adjacent blades varies significantly. Thus, some blade patches can be machined with large-diameter cutters, and some patches have to be cut with small-diameter cutters. Usually, the blisk's material is high-strength stainless steel, titanium alloy, or difficult-to-cut material. The cutting force and temperature in roughing the blisks are high, and thus, the machine tool should be rigid and the cutters should be as large as possible. Therefore, the best industrial practice of rough-machining the blisks is to use multiple largest solid and indexable end-mills to cut them patch by patch on a four-axis computer numerically controlled (CNC) machine. The reasons are (a) four-axis CNC machines are more rigid than five-axis CNC machines, (b) multiple largest cutters are used for higher cutting speeds and feed rates and for less machining time and longer tool life, and (c) if indexable end-mills can be used, the tooling costs are further reduced. For the blisk finishing, a small cutter is often used on a five-axis CNC machine, which is not a topic of this work. However, due to complex shape of the blades, it is quite difficult to automatically optimize the blade surface partition so that each surface patch can be cut with a largest cutter in four-axis blisk rough machining. In the conventional way, numerically controlled (NC) programmers often employ small-diameter solid end-mills and plan their paths to cut the blades layer by layer in four-axis milling. Unfortunately, the machining efficiency of this way is low, and the end-mills wear out quickly. This work establishes a theoretical and completed solution. A simplified optimization model of the largest allowable diameter of the theoretical cutter at a cutter contact (CC) point is established, and an efficient and reliable solver is proposed. The blade surfaces are automated partitioned for largest cutters to the surfaces patch by patch in four-axis rough machining. This approach is efficient and reliable, and it is viable in theory and practical in industry.


2010 ◽  
Vol 26-28 ◽  
pp. 198-203
Author(s):  
Tie Neng Guo ◽  
Ling Li ◽  
Li Gang Cai ◽  
Zhi Feng Liu

The stiffness and damping of mechanical joint are modeled by the zero thickness joint interfaces theory. The method is applied to analyze the dynamic characteristic of the gantry frame in a five axis turning-milling compound CNC machine tool. The model test is carried out in the gantry frame, and the maximum error of the first sixth mode is 5.63%. The experimental and analysis result show the zeros thickness joint element can provide an effective method to model the machine joint and predict the dynamic characteristic of the assembled structure.


Sign in / Sign up

Export Citation Format

Share Document