Advances in Subsea Wet Gas Compression Technologies

Author(s):  
Mads Hjelmeland ◽  
Arne B. Olsen ◽  
Rudi Marjohan
Keyword(s):  
Wet Gas ◽  
2021 ◽  
Vol 15 ◽  
pp. 223-232
Author(s):  
Sharul Sham Dol ◽  
Niraj Baxi ◽  
Mior Azman Meor Said

By introducing a multiphase twin screw pump as an artificial lifting device inside the well tubing (downhole) for wet gas compression application; i.e. gas volume fraction (GVF) higher than 95%, the unproductive or commercially unattractive gas wells can be revived and made commercially productive once again. Above strategy provides energy industry with an invaluable option to significantly reduce greenhouse gas emissions by reviving gas production from already existing infrastructure thereby reducing new exploratory and development efforts. At the same time above strategy enables energy industry to meet society’s demand for affordable energy throughout the critical energy transition from predominantly fossil fuels based resources to hybrid energy system of renewables and gas. This paper summarizes the research activities related to the applications involving multiphase twin screw pump for gas volume fraction (GVF) higher than 95% and outlines the opportunity that this new frontier of multiphase fluid research provides. By developing an understanding and quantifying the factors that influence volumetric efficiency of the multiphase twin screw pump, the novel concept of productivity improvement by a downhole wet gas compression using above technology can be made practicable and commercially more attractive than other production improvement strategies available today. Review and evaluation of the results of mathematical and experimental models for multiphase twin screw pump for applications with GVF of more than 95% has provided valuable insights in to multiphase physics in the gap leakage domains of pump and this increases confidence that novel theoretical concept of downhole wet gas compression using multiphase twin screw pump that is described in this paper, is practically achievable through further research and improvements.


2011 ◽  
Author(s):  
Mads Hjelmeland ◽  
Arne B. Olsen ◽  
Rudi Marjohan
Keyword(s):  
Wet Gas ◽  

Author(s):  
O̸yvind Hundseid ◽  
Lars E. Bakken ◽  
Trond G. Gru¨ner ◽  
Lars Brenne ◽  
Tor Bjo̸rge

This paper evaluates the performance analysis of wet gas compression. It reports the performance of a single stage gas centrifugal compressor tested on wet gas. These tests were performed at design operating range with real hydrocarbon mixtures. The gas volume fraction was varied from 0.97 to 1.00, with alternation in suction pressure. The range is representative for many of the gas/condensate fields encountered in the North Sea. The machine flow rate was varied to cover the entire operating range. The compressor was also tested on a hydrocarbon gas and water mixture to evaluate the impact of liquid properties on performance. No performance and test standards currently exist for wet gas compressors. To ensure nominated flow under varying fluid flow conditions, a complete understanding of compressor performance is essential. This paper gives an evaluation of real hydrocarbon multiphase flow and performance parameters as well as a wet gas performance analysis. The results clearly demonstrate that liquid properties influence compressor performance to a high degree. A shift in compressor characteristics is observed under different liquid level conditions. The results in this paper confirm the need for improved fundamental understanding of liquid impact on wet gas compression. The evaluation demonstrates that dry gas performance parameters are not applicable for wet gas performance analysis. Wet gas performance parameters verified against results from the tested compressor is presented.


Author(s):  
Grant O. Musgrove ◽  
Melissa A. Poerner ◽  
Griffin Beck ◽  
Rainer Kurz ◽  
Gary Bourn

In oil and gas applications, gas-liquid mixtures of a process fluid are commonplace and the phases of the mixtures are separated upstream of pump or compressor machinery. Considering compressors, the separation of phases is important because the liquid causes the compressor to operate significantly different than with dry to affect the range, performance, and durability of the machine. Even with separation equipment, liquid can be ingested in a compressor by liquid carryover from the separator or condensation of the process gas. Additionally, there is no single definition of what is considered a wet gas. In this paper, the definition of wet gas from multiple applications is reviewed and a general definition for wet gas is formulated. The effects of wet gas on reciprocating, screw-type, and centrifugal compressors are reviewed to provide insight into how their operation is affected. The limited information for screw compressors is supplemented with multiphase effects in screw pumps.


2020 ◽  
Author(s):  
Lukas Nader ◽  
David Biddick ◽  
Herman Artinian ◽  
Pandurang Kulkarni ◽  
Bob Van Hoy ◽  
...  

Author(s):  
Giuseppe Vannini ◽  
Matteo Bertoneri ◽  
Kenny Krogh Nielsen ◽  
Piero Iudiciani ◽  
Robert Stronach

The most recent development in centrifugal compressor technology is towards wet gas operating conditions. This means the centrifugal compressor has to manage a liquid phase which is varying between 0 to 3% Liquid Volume Fraction (LVF) according to the most widely agreed definition. The centrifugal compressor operation is challenged by the liquid presence with respect to all the main aspects (e.g. thermodynamics, material selection, thrust load) and especially from a rotordynamic viewpoint. The main test results of a centrifugal compressor tested in a special wet gas loop [1] show that wet gas compression (without an upstream separation) is a viable technology. In wet gas conditions the rotordynamic behavior could be impacted by the liquid presence both from a critical speed viewpoint and stability wise. Moreover the major rotordynamic results from the previous mentioned test campaign [2] show that both vibrations when crossing the rotor first critical speed and stability (tested through a magnetic exciter) are not critically affected by the liquid phase. Additionally it was found that the liquid may affect the vibration behavior by partially flooding the internal annular seals and causing a sort of forced excitation phenomenon. In order to better understand the wet gas test outcomes, the authors performed an extensive CFD analysis simulating all the different types of balance piston annular seals used (namely a Tooth on Stator Labyrinth Seal and a Pocket Damper Seal). They were simulated in both steady state and transient conditions and finally compared in terms of liquid management capability. CFD simulation after a proper tuning (especially in terms of LVF level) showed interesting results which are mostly consistent with the experimental outcome. The results also provide a physical explanation of the behavior of both seals, which was observed during testing.


Author(s):  
Melissa Poerner ◽  
Grant Musgrove ◽  
Griffin Beck

Cycle efficiency is one of the critical parameters linked to the success of implementing a Supercritical Carbon Dioxide (sCO2) power cycle in a Concentrating Solar Power (CSP) plant application. Ambient conditions often change rapidly during operation, making it imperative that the efficiency of the plant cycle be optimized to obtain the maximum power production when sunlight is available. Past analyses have shown that operating the cycle at the critical point provides the optimum efficiency for dry operation. However, operation at this point is challenging due to the dramatic changes in thermophysical properties of CO2 near the critical point and the risk of the fluid having a two-phase, gas-liquid state. As a result, there is a high likelihood that liquid can form upstream of the primary compressor in the sCO2 power cycle. This paper explores the potential for liquid formation when operating near the critical point and looks at the influence of liquid on the compressor performance. The performance impact is based on industry experience with wet gas compression in power generation and oil and gas applications. Options for mitigating liquid effects are also investigated, such as upstream heating, separation, or compressor internal controls (blade surface gas ejection). The conclusions of the paper focus on the risk, estimated impact on performance, and summary of mitigation techniques for liquid CO2 entering a sCO2 compressor.


Author(s):  
Sarah Simons ◽  
Ryan Cater ◽  
Klaus Brun ◽  
Grant Musgrove ◽  
Rainer Kurz

Significant work has been performed to qualify and quantify the effects of operating with wet gas in a centrifugal compressor system [1, 2]. Of particular interest is the sharp decrease in the isentropic efficiency of the machine when operating with process gas containing various liquid volume fractions. However, it is unknown how much of the performance losses are due to aerodynamic effects, such as blade profile and flow separation losses, rather than the basic thermodynamic effects of compressing a multiphase gas that has a higher density, integral wet-cooling, and contains small amounts of high-density droplets. Previous studies showed that the overall efficiency losses exceeded those expected from purely thermodynamic effects so aerodynamic effects have been principally blamed for the lower efficiency. However, no test data exists in the public domain that quantifies these losses and it is experimentally difficult to perform this type of testing in centrifugal compressor. Therefore, a series of tests was performed on a reciprocating compressor with power and efficiency recorded through dynamic pressure measurements obtained inside the compression cylinder, torque measured on the shaft, and enthalpy rise measurements obtained outside the cylinders. Using this approach one can eliminate (or differentiate) the aerodynamic effects of wet gas compression, such as valve losses, thus allowing the direct determination of the thermodynamic losses of wet gas compression. Specifically, when there is multi-phase flow entering the machinery, there is the thermodynamic effect of how a mixture of water and air behaves when being compressed [from a process perspective] and the aerodynamic effect of moisture encountering the blades of a centrifugal compressor [performance loss] or the valve passages of a reciprocating compressor [pressure loss]. Directly instrumenting the internals of a reciprocating compressor cylinder allows the evaluation of the thermodynamic performance of multi-phase compression separate from any aerodynamic penalties. This paper describes the tests performed in a reciprocating compressor open test loop operating with varying amounts of liquid volume fractions (LVFs) of water in the process gas (air). The data was reduced using Pressure-Volume card measurements inside and outside the cylinder, enthalpy rise, as well as torque to determine the impact of volume fraction on compression power and efficiency. Additionally, the valve losses, system efficiencies, and peak compression “spike” were evaluated in relations to the LVFs.


Author(s):  
O̸yvind Hundseid ◽  
Lars E. Bakken

The growing interest in wet gas compressors calls for accurate methods for performance prediction. Present evaluation methods for compressor and pump performance fail when evaluating the compression of gases containing liquid. Gas compression performance predictions given in ASME PTC-10-97 and ISO 5318 are based on the method John M. Schultz proposed in 1962. This method assumes a polytropic compression path and is based on averaged gas properties of inlet and outlet condition. The polytropic compression path is defined by keeping pvn constant, where n is constant along the compression path. When employing the Schultz method there is a challenge in defining the polytropic constant. This is seen in cases where dry gas compressors are exposed to wet components and compressor efficiency estimates exceed 100%. Today’s computer technology makes a direct integration of the polytropic head (∫vdp) possible where actual fluid properties along the compression path are included. Phase changes along the compression path are included with this method. This enables a detailed prediction to be made of the actual volumetric flow rate for the various compressor stages. This paper reports the implementation of the direct integration procedure for wet gas performance prediction. The procedure enables generic wet gas compression to be studied which forms the foundation for performance analysis with variations in operation at conditions and fluid components and properties.


Author(s):  
Melissa Poerner ◽  
Ryan Cater ◽  
Craig Nolen ◽  
Grant Musgrove ◽  
David Ransom

Wet Gas Compression (WGC) continues to be an important topic as oil and gas production is driven further out into the ocean and moves critical equipment to the ocean floor. In the last year, significant milestones have been reached for WGC by the installation of the first wet gas compressor off the coast of Norway. Even with this achievement, there is a lack of understanding of the physics behind WGC and there are deficiencies in the ability to predict the compressor performance. Understanding the two phase flow structure inside the compressor is important for validating WGC simulations and being able to predict compressor performance. This paper reviews the results from a test program focused on characterizing the flow inside the compressor by using flow visualization. An open impeller centrifugal compressor was outfitted with windows to view the flow inside the compressor at the inlet, inside the impeller and in the diffuser section. Testing was conducted with an ambient suction pressure at various compressor speeds, flow rates, and liquid volume fractions. Images and videos were captured at the different conditions in order to observe the two phase flow structure. The general patterns and trends that characterize wet gas flow are discussed in this paper.


Sign in / Sign up

Export Citation Format

Share Document