Liquid Removal to Improve Gas Production and Recoverable Reserves in Unconventional Liquid-Rich Reservoirs by Subsurface Wet Gas Compression

2020 ◽  
Author(s):  
Lukas Nader ◽  
David Biddick ◽  
Herman Artinian ◽  
Pandurang Kulkarni ◽  
Bob Van Hoy ◽  
...  
2021 ◽  
Vol 73 (07) ◽  
pp. 62-63
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 201138, “Liquid Removal To Improve Gas Production and Recoverable Reserves in Unconventional Liquid-Rich Reservoirs by Subsurface Wet Gas Compression,” by Lukas Nader, SPE, David Biddick, SPE, and Herman Artinian, SPE, Upwing Energy, et al., prepared for the 2020 SPE Virtual Artificial Lift Conference and Exhibition—Americas, 10–12 November. The paper has not been peer reviewed. This paper describes an artificial lift technology, a subsurface compressor system (SCS), that simultaneously removes liquids, increases gas production, and improves recoverable reserves in gas wells. The subsurface compressor can reverse the vicious cycle of liquid loading, which decreases gas production from a gas well and leads to premature abandonment, by creating a virtuous cycle of increased gas and condensate production. The first field trial of the technology in an unconventional shale gas well supports the mechanism of subsurface gas compression and its benefit to unconventional gas production. The SCS This paper focuses on the latest deployed design. As with all SCS systems, this unit has three major components (Fig. 1). High-Speed Motor. The motor is a four-pole, high-speed, permanent-magnet (PM) synchronous topology. The motor maximum operating speed is 50,000 rev/min, with a 55,000-rev/min overspeed. Surface-mounted PMs are retained on the shaft surface. A sine filter is also used to minimize harmonic losses in the rotor, eliminating the need for active cooling flow in the rotor cavity. With the motor housing hermetically sealed from the environment and maintaining a low pressure within the housing, a minimum life of 20 years is expected from the electrical motor section. The motor rotor is levitated with passive magnetic bearings, requiring no lubrication or a pressurized air source, to support the high-speed rotating shafts. Magnetic Coupling. The magnetic coupling consists of three major components: the male and female ends of the magnetic coupling as well as the isolation can in between. The female end of the magnetic coupling is attached directly to the motor. The isolation can is used to seal the female magnetic coupling section hermetically within the body of the PM motor from the environment. Using a magnetic coupling to transmit torque through an isolation can is one of the key features of the protectorless, rotating, sealless motor system to ensure reliability of the motor. Hybrid Wet Gas Compressor. The compressor is a multistage hybrid axial flow wet compressor. The key advantage of this proprietary compressor design is its relatively straight flow path compared with those of centrifugal compressors. When the flow path is straight, with little change of direction, the heavier constituents, including liquids and solids, will follow the gas phase because there is little or no centrifugal force to separate the high-density phases from the low-density one. Also, erosion of the compressor parts is minimized by the straight flow pattern because of the lower probability of impingements of solid particles on the compressor internal surfaces compared with the torturous internal paths of centrifugal compressors. The remainder of the system, as well as the deployment, is very similar to an electrical submersible pump.


Author(s):  
Melissa Poerner ◽  
Ryan Cater ◽  
Craig Nolen ◽  
Grant Musgrove ◽  
David Ransom

Wet Gas Compression (WGC) continues to be an important topic as oil and gas production is driven further out into the ocean and moves critical equipment to the ocean floor. In the last year, significant milestones have been reached for WGC by the installation of the first wet gas compressor off the coast of Norway. Even with this achievement, there is a lack of understanding of the physics behind WGC and there are deficiencies in the ability to predict the compressor performance. Understanding the two phase flow structure inside the compressor is important for validating WGC simulations and being able to predict compressor performance. This paper reviews the results from a test program focused on characterizing the flow inside the compressor by using flow visualization. An open impeller centrifugal compressor was outfitted with windows to view the flow inside the compressor at the inlet, inside the impeller and in the diffuser section. Testing was conducted with an ambient suction pressure at various compressor speeds, flow rates, and liquid volume fractions. Images and videos were captured at the different conditions in order to observe the two phase flow structure. The general patterns and trends that characterize wet gas flow are discussed in this paper.


2021 ◽  
Vol 15 ◽  
pp. 223-232
Author(s):  
Sharul Sham Dol ◽  
Niraj Baxi ◽  
Mior Azman Meor Said

By introducing a multiphase twin screw pump as an artificial lifting device inside the well tubing (downhole) for wet gas compression application; i.e. gas volume fraction (GVF) higher than 95%, the unproductive or commercially unattractive gas wells can be revived and made commercially productive once again. Above strategy provides energy industry with an invaluable option to significantly reduce greenhouse gas emissions by reviving gas production from already existing infrastructure thereby reducing new exploratory and development efforts. At the same time above strategy enables energy industry to meet society’s demand for affordable energy throughout the critical energy transition from predominantly fossil fuels based resources to hybrid energy system of renewables and gas. This paper summarizes the research activities related to the applications involving multiphase twin screw pump for gas volume fraction (GVF) higher than 95% and outlines the opportunity that this new frontier of multiphase fluid research provides. By developing an understanding and quantifying the factors that influence volumetric efficiency of the multiphase twin screw pump, the novel concept of productivity improvement by a downhole wet gas compression using above technology can be made practicable and commercially more attractive than other production improvement strategies available today. Review and evaluation of the results of mathematical and experimental models for multiphase twin screw pump for applications with GVF of more than 95% has provided valuable insights in to multiphase physics in the gap leakage domains of pump and this increases confidence that novel theoretical concept of downhole wet gas compression using multiphase twin screw pump that is described in this paper, is practically achievable through further research and improvements.


Author(s):  
Steve Ingistov

This Paper describes the on-going efforts of finding the root-cause for the failures of high-energy (over 30,000 HP), high-pitch velocity (over 30,000 FPM) gear elements. These gear elements are presently operating in Oil and Gas Production Facilities. They are installed between the GT drivers and turbo-compressors. Turbo-compressors deliver high-pressure gas into the underground oil fields to enhance the oil production. The oldest Gas Compression Units were commissioned in 1995 and the latest in 1998. Since installation in 1995 at least 6 gear boxes experienced failures of the pinion (high speed gear) teeth. The Mean Time Between Failures (MTBF) of the pinion teeth was estimated around 34,000 operating hours. The costly shutdown of Gas Compression Units forced the management to seek advice within the company. The intent of this Paper is to share some field experiences and to present some corrective actions. The intent of this Paper is also to help Original Equipment Manufacturers (OEMs) in this case gear elements Manufacturers to develop better balance between cost, life and reliability. Sometimes the balance between these three parameters is difficult to maintain. Too often the gear elements Manufacturers are forced to compete on the price basis and as result the quality of the gear elements are sometimes compromised. In addition, several well-known gear elements Manufacturers stopped offering high energy, high-pitch velocity gear elements because they suffered serious failures of the gear elements on the test stand and also in the field.


Author(s):  
Trond G. Gru¨ner ◽  
Lars E. Bakken

The development of wet gas compressors will enable increased oil and gas production rates and enhanced profitable operation by subsea well-stream boosting. A more fundamental knowledge of the impact of liquid is essential with regard to the understanding of thermodynamic and fluid dynamic compressor behavior. An open-loop impeller test facility was designed to investigate the wet gas performance, aerodynamic stability, and operation range. The facility was made adaptable for different impeller and diffuser geometries. In this paper, the wet gas test facility and experimental work concerning the impact of wet gas on a representative full-scale industrial impeller are presented. The centrifugal compressor performance was examined at high gas volume fractions and atmospheric inlet conditions. Air and water were used as experimental fluids. Dry and wet gas performance was experimentally verified and analyzed. The results were in accordance with previous test data and indicated a stringent influence of the liquid phase. Air/water tests at atmospheric conditions were capable of reproducing the general performance trend of hydrocarbon wet gas compressor tests at high pressure.


2011 ◽  
Author(s):  
Mads Hjelmeland ◽  
Arne B. Olsen ◽  
Rudi Marjohan
Keyword(s):  
Wet Gas ◽  

Author(s):  
O̸yvind Hundseid ◽  
Lars E. Bakken ◽  
Trond G. Gru¨ner ◽  
Lars Brenne ◽  
Tor Bjo̸rge

This paper evaluates the performance analysis of wet gas compression. It reports the performance of a single stage gas centrifugal compressor tested on wet gas. These tests were performed at design operating range with real hydrocarbon mixtures. The gas volume fraction was varied from 0.97 to 1.00, with alternation in suction pressure. The range is representative for many of the gas/condensate fields encountered in the North Sea. The machine flow rate was varied to cover the entire operating range. The compressor was also tested on a hydrocarbon gas and water mixture to evaluate the impact of liquid properties on performance. No performance and test standards currently exist for wet gas compressors. To ensure nominated flow under varying fluid flow conditions, a complete understanding of compressor performance is essential. This paper gives an evaluation of real hydrocarbon multiphase flow and performance parameters as well as a wet gas performance analysis. The results clearly demonstrate that liquid properties influence compressor performance to a high degree. A shift in compressor characteristics is observed under different liquid level conditions. The results in this paper confirm the need for improved fundamental understanding of liquid impact on wet gas compression. The evaluation demonstrates that dry gas performance parameters are not applicable for wet gas performance analysis. Wet gas performance parameters verified against results from the tested compressor is presented.


Author(s):  
Grant O. Musgrove ◽  
Melissa A. Poerner ◽  
Griffin Beck ◽  
Rainer Kurz ◽  
Gary Bourn

In oil and gas applications, gas-liquid mixtures of a process fluid are commonplace and the phases of the mixtures are separated upstream of pump or compressor machinery. Considering compressors, the separation of phases is important because the liquid causes the compressor to operate significantly different than with dry to affect the range, performance, and durability of the machine. Even with separation equipment, liquid can be ingested in a compressor by liquid carryover from the separator or condensation of the process gas. Additionally, there is no single definition of what is considered a wet gas. In this paper, the definition of wet gas from multiple applications is reviewed and a general definition for wet gas is formulated. The effects of wet gas on reciprocating, screw-type, and centrifugal compressors are reviewed to provide insight into how their operation is affected. The limited information for screw compressors is supplemented with multiphase effects in screw pumps.


2011 ◽  
Author(s):  
Mads Hjelmeland ◽  
Arne B. Olsen ◽  
Rudi Marjohan
Keyword(s):  
Wet Gas ◽  

Author(s):  
O̸yvind Hundseid ◽  
Lars E. Bakken ◽  
Tor Helde

The compressor polytropic head and efficiency analysis are based on the assumption that the compression process follows the path of a constant polytropic exponent n. Both the ASME PTC10-97 and the ISO 5389 refer to the polytropic analysis by John M. Schultz. The procedure utilizes a head correction factor and two compressibility functions to obtain a solution of the integral Δhp = ∫vdp. Present computer technology renders possible a direct integration of the compression path where the variation in actual gas properties along the path is included. This method eliminates the averaging of gas properties which the Schultz procedure includes. This paper reports deviation in compressor performance using the Schultz procedure with different average gas properties. The implementation of a direct integration procedure, employing actual gas properties from the new GERG-2004 equation of state, is given. The GERG-2004 equation of state has proven to give accurate density values both in the vapour and liquid phases. Depending on how the polytropic compression analysis is implemented, the work has revealed up to 4% deviation in polytropic head and efficiency for some specific compressors. This adds an extra uncertainty in compressor performance verification. Even though the API 617 allows up to 4% deviation, some compressors have to meet a more stringent demand, for instance 2% at the Sno̸hvit LNG plant. Future challenges within oil and natural gas production are related to wet gas compressors. The present paper points out the advantages in using a direct integration method for wet gas performance predictions as this takes phase changes along the compression path into account.


Sign in / Sign up

Export Citation Format

Share Document