HP/HT Matrix Acidizing Treatments of Carbonate Rocks Using A New Retarded HCl Acid System

2020 ◽  
Author(s):  
Ahmed Farid Ibrahim ◽  
Hisham Nasr-El-Din ◽  
Li Jiang
2021 ◽  
pp. 1-12
Author(s):  
Khatere Sokhanvarian ◽  
Cornell Stanciu ◽  
Jorge M. Fernandez ◽  
Ahmed Farid Ibrahim ◽  
Harish Kumar ◽  
...  

Summary Matrix acidizing improves productivity in oil and gas wells. Hydrochloric acid (HCl), because of its many advantages such as its effectiveness, availability, and low cost, has been a typical first-choice fluid for acidizing operations. However, HCl in high-pressure/high-temperature (HP/HT) wells can be problematic because of its high reactivity, resulting in face dissolution, high corrosion rates, and high corrosion inhibition costs. Several alternatives to HCl have been tested; among them, emulsified acid is a favorable choice because of its inherent low corrosion rate, deeper penetration into the reservoir, fewer asphaltene/sludge problems, and better acid distribution due to its higher viscosity. The success of the new system is dependent upon the stability of the emulsion, especially at high temperatures. The emulsified acid must be stable until it is properly placed, and it must also be compatible with other additives in an acidizing package. This study develops a stable, emulsified acid system at 300°F using aliphatic nonionic surfactants. This paper introduces a new nonaromatic, nonionic surfactant to form an emulsified acid for HP/HT wells. The type and quality of the emulsified acid were assessed through conductivity measurements and drop tests. The thermal stability of the system was monitored as a function of time through the use of pressure tubes and a preheated oil bath at 300°F. A LUMisizer® (LUM GmbH, Berlin, Germany) and Turbiscan® (Formulaction, S. A., L’Union, France) were used to determine the stability and the average droplet size of the emulsion, respectively. The viscosity of the emulsified acid was measured at different temperatures up to 300°F as a function of shear rate (1 to 1,000 s−1). The microscopy study was used to examine the shape and the distribution of acid droplets in diesel. Coreflood studies at low and high flow rates were conducted to determine the performance of the newly developed stable emulsified acid in creating wormholes in carbonate rocks. Inductively coupled plasma and computed tomography (CT) scans were used to determine the dissolved cations and wormhole propagation, respectively. Superior stimulation results with a low pore volume of acid to breakthrough (PVBT) were achieved at 300°F with the newly developed emulsified acid system. The wormhole propagation was narrow and dominant compared to branched wormholes resulting from conventional emulsified acid systems. Results indicate that a nonionic surfactant with optimal chemistry, such as a suitable hydrophobe chain length and structure, can form a stable emulsified acid. In this study we introduce a new and effective aliphatic nonionic surfactant to create a stable emulsified acid system for matrix acidizing at HP/HT conditions, leading to a deeper penetration of acid with low pore volume to breakthrough. The successful core flood studies in the laboratory using carbonate cores suggest that the new emulsified acid system may efficiently stimulate HP/HT carbonate reservoirs.


2013 ◽  
Vol 773 ◽  
pp. 628-633
Author(s):  
Fu Li ◽  
An Lin Wu ◽  
Min Min Xia ◽  
Hong Xian Liu ◽  
Ting Ting Zhang

As a preferred technology to enhance oilfield energy production, well stimulation has and will continue to have an important role in fulfilling the worlds future energy needs. Mud acid is a conventional acid system that reacts with most injurants and removes damages. However, fast reaction rate with minerals will lead to high leak-off velocity, great possibility of secondary and tertiary precipitation, lower effect of corrosion inhibitor in high temperature as well as short efficient operating range. Therefore, new kinds of acid system are required to cope with these problems above. This paper proposed three acid system with the similarity of fluorine ammonium compounds for sandstone acidizing ammonium hydrogen fluoride (AHF), ammonium fluotitanate (AFT), and ammonium fluoroborate system (AFB). Chemical structures, acidity test and solubility tests have proved the feasibility. Then, performance comparisons are conducted to prove the advantages over mud acid system.


2021 ◽  
Author(s):  
Rao Shafin Khan ◽  
Nestor Molero ◽  
Philippe Enkababian ◽  
Aizaz Khalid ◽  
Malik Anzar Afzal ◽  
...  

Abstract Acid stimulation in high-temperature sandstone reservoirs with high clay content can lead to undesired results due to secondary and tertiary reactions between treatment fluids and reservoir clays. Although there have been significant advancements in treating clastic formations over the years, high bottomhole temperature (BHT) coupled with high clay content of up to 35% and subhydrostatic conditions still presents a major challenge. A stimulation workflow to address these challenges was adapted to treat and successfully enhance well production in sandstone reservoirs in southern Pakistan. Candidate wells were selected for acidizing treatments based on declining production trend and identification of significant damage skin. X-ray diffraction tests on core samples indicated presence of acid-sensitive clays and calcite. Due to the risk of precipitation from secondary and tertiary reactions, conventional hydrochloric and hydrofluoric acid treatments were not viable options. Core flow testing was conducted to assess the efficiency of alternative acid systems at the reservoir conditions with BHT above 320°F, validating the selection of a high-performance sandstone acid system that was designed to handle undissolved clays in the critical matrix by helping to bind the clays to the pore surfaces, thus preventing them from migrating and plugging the pore throat during flowback. The matrix stimulation campaign included vertical and deviated dry gas wells, completed with 3 1/2-in. to 4 1/2-in. production tubing and 7-in. liner, with perforated intervals averaging 20 ft. Prior to the main acid treatment, high-pressure rotary jetting across the target intervals was conducted by pumping organic acid via coiled tubing. This wellbore conditioning technique allowed maximizing the acid performance by delivering 360° high-energy fluid to clear the perforations of scale and improve injectivity. The main treatment consisted of an organic acid preflush and a high-performance sandstone acid system as the main fluid, followed by a brine post-flush. Throughout the treatment, nitrogen was added to all fluids to facilitate fluid flowback under subhydrostatic conditions. The wells treated using this matrix stimulation engineered workflow yielded sustained production gains from 3 MMscf/D to 3.5 MMscf/D, exceeding expectations by more than 50% and achieving payback periods less than 20 days. The success of the treatment was largely due to the carefully designed stimulation workflow and its flawless execution. Acidizing high-temperature sandstone reservoirs with 30 to 35% clay content is uncommon. The experience gained in southern Pakistan validates the high-performance sandstone acid system as a reliable option for matrix acidizing in hot, acid-sensitive sandstone reservoirs. It also provides a detailed engineering workflow for candidate selection, treatment design, and job execution and evaluation, which can easily be adapted to regions facing similar challenges.


2010 ◽  
Author(s):  
Charles Edouard Cohen ◽  
Philippe Michel Jacques Tardy ◽  
Timothy Michael Lesko ◽  
Bruno H. Lecerf ◽  
Svetlana Pavlova ◽  
...  

SPE Journal ◽  
2011 ◽  
Vol 16 (03) ◽  
pp. 559-574 ◽  
Author(s):  
M.A.. A. Mahmoud ◽  
H.A.. A. Nasr-El-Din ◽  
C.A.. A. De Wolf ◽  
J.N.. N. LePage ◽  
J.H.. H. Bemelaar

Summary Matrix acidizing is used in carbonate formations to create wormholes that connect the formation to the wellbore. Hydrochloric acid (HCl), organic acids, or mixtures of these acids are typically used in matrix-acidizing treatments of carbonate reservoirs. However, the use of these acids in deep wells has some major drawbacks, including high and uncontrolled reaction rates and corrosion to well tubulars, especially those made of chromium-based tubulars (Cr-13 and duplex steel); and these problems become severe at high temperatures. To overcome problems associated with strong acids, chelating agents were introduced and used in the field. However, major concerns with most of these chemicals are their limited dissolving power and negative environmental impact. L-glutamic acid diacetic acid (GLDA), a newly developed environmentally friendly chelate, was examined as a replacement for acid treatments in deep oil and gas wells. The solubility of calcium carbonate (CaCO3) in the new chelate was measured over a wide range of parameters. Coreflood tests were conducted using long Indiana limestone cores 1.5 in. in diameter and 20 in. in length, which allowed better understanding of the propagation of this chemical in carbonate rocks. The cores were X-ray scanned before and after the injection of chelate solutions into the cores. The concentration of calcium (Ca) and chelate was measured in the core effluent samples. To the best of our knowledge, this is the first study to examine the fate and propagation of chelating agents in coreflood studies. GLDA has a very good ability to dissolve Ca from carbonate rocks over a wide pH range by a combination of acid dissolution and chelation. The addition of 5 wt% sodium chloride (NaCl) did not affect the GLDA performance at pH = 13 but significantly accelerated the reaction at pH = 1.7. Compared with other chelating agents, GLDA dissolved more Ca than ethanoldiglycinic acid (EDG) but less than hydroxyethyl ethylenediamine triacetic acid (HEDTA) at high pH values. GLDA of pH = 1.7 was able to form wormholes at 2 and 3 cm3/min. GLDA was found to be thermally stable at temperatures up to 350°F.


2019 ◽  
Author(s):  
Chang Siong Ting ◽  
Zayful Kamarudzaman ◽  
M Ikhwan Aris ◽  
Nurul Ezween Hasbi ◽  
Suzanna Juyanty M Jeffry ◽  
...  
Keyword(s):  

2015 ◽  
Author(s):  
T. T. Bekibayev ◽  
I. K. Beisembetov ◽  
B. K. Assilbekov ◽  
A. B. Zolotukhin ◽  
U. K. Zhapbasbayev ◽  
...  

SPE Journal ◽  
2019 ◽  
Vol 24 (05) ◽  
pp. 2163-2181 ◽  
Author(s):  
W.. Wei ◽  
A.. Varavei ◽  
A.. Sanaei ◽  
K.. Sepehrnoori

Summary Matrix acidizing is a widely used stimulation process during which acid is injected into the formation at pressures that are less than the fracturing pressure. The purpose of matrix acidizing is to improve formation permeability or to bypass damaged zones through rock dissolution. Because of precipitation and diagenesis, carbonate rocks might contain different compositions, including calcite (CaCO3), dolomite [CaMg(CO3)2], and other minerals. When acid is injected into the formation, reactions between acid and multiple minerals of carbonate rocks occur simultaneously. In this paper, a two–scale continuum model is implemented in UTCOMP, a 3D compositional reservoir simulator, coupled with IPhreeqc, a generalized code of PHREEQC as a module. PHREEQC is an open–source program that performs a wide variety of geochemical calculations (Charlton and Parkhurst 2011). For the UTCOMP/IPhreeqc coupled model, the two–scale continuum model describes the mechanisms of convection and dispersion, whereas IPhreeqc is used for the calculation of reactions between aqueous phase and minerals. We have validated the simulation model through comparison with the analytical solution. We also compared the UTCOMP/IPhreeqc coupled model with a simple–reaction model, in which the reaction is assumed to be a first–order reaction between acid and calcite, by modifying the IPhreeqc database to obtain consistent results. On this basis, we have investigated the effects of mineral compositions on acidizing efficiency and the wormhole–propagation process. It is found that mineralogy heterogeneity is a key factor that affects acidizing efficiency and the dissolution structure. This work contributes to simulating the acidizing process with complex geochemical reactions considering the chemistry of the aqueous solution interacting with minerals. The presented model improves our understanding of carbonate–acidizing optimization.


Sign in / Sign up

Export Citation Format

Share Document