Downhole Sludge: Formation, Characterization and Removal

2021 ◽  
Author(s):  
Ali Al-Taq ◽  
Abdullah Al-Moajil ◽  
Sajjad Aldarweesh ◽  
Hussain Al-Abbas

Abstract Sludge formed downhole in the production interval can be classified into crude oil-based or mud-based sludge. Sludge obstruction may result in partial or total loss of well productivity. Oil-based mud is commonly used in drilling of the pay zones in sandstone formations as a less/non damaging fluid. Oil-based mud typically contain emulsifier, viscosifer and other additives including polymer blend and calcium carbonate to serve different functions. Presence of emulsifier may increase emulsion tendency upon interaction with downhole environment. The resulting emulsion might be tight to an extent that a thick sludge is formed which can impair well productivity. Similarly, oil-based sludge may form from oil/water interaction in presence of emulsifiers, asphaltene, wax, solids, shear, etc. Identification of the sludge material will help in development of an effective chemical treatment to remove formation damage and restore well productivity. In this study, an extensive laboratory work was conducted to explore potential interactions of different downhole environment contaminants/factors on formation of oil-based and mud-based sludge. Typical mud-based and crude oil-based sludge samples were characterized using different analytical techniques including solvent extraction, XRD, TGA, ICP and viscosity. The results showed that the mud-based sludge sample contained calcium carbonate, dolomite quartz as the main components in the inorganic phase while the organic phase include polymers and oil. The oil-based sludge sample contained mainly water (82 wt%) with some solid particulates and asphaltene in the organic phase. Analysis of supernatants generated from solubility tests conducted for the mud-based and oil-based sludge samples revealed in addition to the high amount of calcium presence of iron in considerable amount (nearly 1,000 mg/L). Interaction of ferric chloride, quartz with an invert-emulsion mud was investigated. A significant increase in viscosity was observed upon incorporation of these contaminates with the mud sample. Iron ions in the aqueous phase tended to stabilized emulsion. This paper presents in detail mechanisms of mud-based and crude oil-based sludge formation upon interaction with environment. It also examined several chemical formulations for removal of mud-based and oil-based sludge samples.

Author(s):  
Huijun Zhao ◽  
Xiang Ding ◽  
Pengfei Yu ◽  
Yun Lei ◽  
Xiaofei Lv ◽  
...  

2020 ◽  
Vol 12 (17) ◽  
pp. 6862
Author(s):  
Chien Li Lee ◽  
Cheng-Hsien Tsai ◽  
Chih-Ju G. Jou

The oily sludge from crude oil contains hazardous BTEX (benzene, toluene, ethylbenzene, xylene) found in the bottom sediment of the crude oil tank in the petroleum refining plant. This study uses microwave treatment of the oily sludge to remove BTEX by utilizing the heat energy generated by the microwave. The results show that when the oily sludge sample was treated for 60 s under microwave power from 200 to 300 W, the electric field energy absorbed by the sample increased from 0.17 to 0.31 V/m and the temperature at the center of the sludge sample increased from 66.5 °C to 96.5 °C. In addition, when the oily sludge was treated for 900 s under microwave power 300 W, the removal rates were 98.5% for benzene, 62.8% for toluene, 51.6% for ethylbenzene, and 29.9% for xylene. Meanwhile, the highest recovery rates of light volatile hydrocarbons in sludge reached 71.9% for C3, 71.3% for C4, 71.0% for C5, and 78.2% for C6.


2007 ◽  
Vol 4 (1) ◽  
pp. 66-69 ◽  
Author(s):  
Guo Jixiang ◽  
Li Mingyuan ◽  
Lin Meiqin ◽  
Wu Zhaoliang

2017 ◽  
Vol 108 ◽  
pp. 1-8 ◽  
Author(s):  
Aprami Jaggi ◽  
Ryan W. Snowdon ◽  
Andrew Stopford ◽  
Jagoš R. Radović ◽  
Thomas B.P. Oldenburg ◽  
...  

2011 ◽  
Vol 239-242 ◽  
pp. 2650-2654
Author(s):  
Fu Chen ◽  
Jie He ◽  
Ping Guo ◽  
Yuan Xu ◽  
Cheng Zhong

According to the mechanisms of carbon dioxide miscible flooding and previous researchers’ work on synthesis of CO2-soluble surfactant, Citric acid isoamyl ester was synthesized, and it’s oil solubility and the rate of viscosity reduction both in oil-water system and oil were evaluated. And then we found that this compound can solve in oil effectively; the optimum mass of Citric acid isoamyl ester introduced in oil-water system is 0.12g when the mass ratio of oil and water is 7:3 (crude oil 23.4g, formation water 10g) and the experimental temperature is 50°C , the rate of viscosity reduction is 47.2%; during the evaluation of the ability of Citric acid isoamyl ester to decrease oil viscosity, we found that the optimum dosage of this compound in 20g crude oil is 0.2g when the temperature is 40°C, and the rate of viscosity reduction is 7.37% at this point.


Sign in / Sign up

Export Citation Format

Share Document