Feasibility Study on Optimisation of Material Selection for High Temperature Sour Gas Producer

2021 ◽  
Author(s):  
M. Helmi Nordin ◽  
M. Wahidullah Moh Wahi ◽  
Amresh Sashidharan ◽  
Nurfuzaini A. Karim ◽  
Alif Syahrizad Ramli

Abstract K field is a green field in East Malaysia with prolific gas reserves that is being developed with six high rate gas producing wells from high temperature (190 °C) carbonate reservoir. Tubular material feasibility study is one of the key subjects of scrutiny when it comes to completing wells in high temperature environment coupled with existence of significant level of H2S and CO2 contents. Material testing was conducted at the specified test environments (102 bar CO2 + 120ppm H2S) and load cases to assess susceptibility of Martensitic Stainless Steel to Stress Corrosion Cracking (SCC), corrosion rate and compatibility with completion brine. The aim was to optimize the material selection that is fit for purpose (lower completion and flow-wetted area of production casing) and reduce well cost up to USD 2.5 million. The base case of material selection for flow-wetted section is 17CR110 ksi, which meets the design requirements of these wells based on fit for purpose test conducted in the data base. Flow-wetted section in this case is production liner and flow-wetted section of production casing below production packer. Super 13CR -110 ksi and 15CR125 ksi material grades were considered for design optimization for this section of interest. Four Point Bend Method was used for SCC test sets while weight loss method for corrosion rate measurement. For brine compatibility test, calcium bromide (without additive) was used as test solution for 17CR 110 ksi, 15CR 125 ksi and Super 13CR -110 ksi with elevated temperature of 190 °C. Post-test assessment was conducted by visual examination by stereomicroscope to check for surface indication and dye-penetrant examination to determine any indication of cracks. It was observed that the Super 13CR -110 ksi and 15CR 125 ksi test specimens survived the test with no pitting observed. Meanwhile, test specimens were weighed to determine corrosion rates, resulted to Super 13CR -110 ksi sample having an average corrosion rate of 0.2195 mm/year. This translates to less than 30% weight loss throughout well production life and therefore accepted for open-hole production liner and production casing flow-wetted section. Key enabler in this design optimization effort is the understanding of the Stress Corrosion Cracking for martensitic stainless steel in high temperature sour environment where commonly, martensitic stainless steel (Super 13Cr / Modified Super 13Cr) working temperature is 165 °C. The test manages to extend the working temperature up to 190 °C.

2014 ◽  
Vol 556-562 ◽  
pp. 162-165 ◽  
Author(s):  
Shi Dong Zhu ◽  
Hai Xia Ma ◽  
Jin Ling Li ◽  
Zhi Gang Yang

Effects of elemental sulfur on corrosion behavior of super 13Cr martensitic stainless steel were investigated by utilizing weight loss test, and the micro morphologies and chemical elements of corrosion scales were characterized by using SEM and EDS. The results showed that corrosion resistance of super 13Cr stainless steel was aggravated by the hydrolytic action of sulfur, the corrosion rate of super 13Cr stainless steel increased with the increasing of sulfur content, and firstly increased and then decreased with the increasing of temperature due to the activated adsorption and existential state of sulfur at the different temperatures.


Alloy Digest ◽  
2012 ◽  
Vol 61 (4) ◽  

Abstract Böhler (or Boehler) A911 is a super duplex ferritic-austenitic chromium-nickel-molybdenum stainless steel with excellent resistance to stress-corrosion cracking, pitting, and crevice corrosion. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance as well as forming, heat treating, machining, and joining. Filing Code: SS-1119. Producer or source: Böhler-Uddeholm Specialty Metals Inc..


Alloy Digest ◽  
1972 ◽  
Vol 21 (8) ◽  

Abstract EMPIRE IS0-40 is a precipitation-hardenable stainless steel for castings resistant to corrosion, stress-corrosion cracking and erosion-corrosion. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness and fatigue. It also includes information on high temperature performance and corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: SS-278. Producer or source: Empire Steel Castings Inc..


Alloy Digest ◽  
2007 ◽  
Vol 56 (7) ◽  

Abstract Boehler A965 is a superaustenitic Cr-Ni-Mo stainless steel with excellent resistance to stress-corrosion cracking, pitting, and crevice corrosion. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-994. Producer or source: Böhler-Uddeholm Specialty Metals Inc.


2014 ◽  
Vol 641-642 ◽  
pp. 427-433
Author(s):  
Shuang Cheng ◽  
Feng Lin ◽  
Pei Long Yang ◽  
Pei Ke Zhu ◽  
Jin Gen Deng ◽  
...  

This paper analyzed the corrosion environment of Missan oilfields and investigated the oilfield country tubular goods used in other similar oilfields. Summarized the effect of partial pressure ratio of H2S/CO2 and Cl-to the corrosion behavior of OCTG. This paper concluded the service condition, test results and anti-corrosion mechanism of carbon steel, low-chrome steel, modified martensitic stainless steel and nickel alloy. Finally arrived at conclusion that the nickel alloy can meet the requirement of Missan oilfields, some literature reported that the modified martensitic stainless steel can apply in H2S/CO2 environment. In the condition that be easy to replace the tubular, carbon steel and low-chrome steel tubular can meet the requirement with corrosion inhibitor.


2013 ◽  
Vol 794 ◽  
pp. 507-513
Author(s):  
R.G. Rangasamy ◽  
Prabhat Kumar

Austenitic stainless steels are the major material of construction for the fast breeder reactors in view of their adequate high temperature mechanical properties, compatibility with liquid sodium coolant, good weldability, availability of design data and above all the fairly vast and satisfactory experience in the use of these steels for high temperature service. All the Nuclear Steam Supply System (NSSS) components of FBR are thin walled structure and require manufacture to very close tolerances under nuclear clean conditions. As a result of high temperature operation and thin wall construction, the acceptance criteria are stringent as compared to ASME Section III. The material of construction is Austenitic stainless steel 316 LN and 304 LN with controlled Chemistry and calls for additional tests and requirements as compared to ASTM standards. Prototype Fast Breeder Reactor (PFBR) is sodium cooled, pool type, 500 MWe reactor which is at advanced stage of construction at Kalpakkam, Tamilnadu, India. In PFBR, the normal heat transport is mainly through two secondary loops and in their absence; the decay heat removal is through four passive and independent safety grade decay heat removal loops (SGDHR). The secondary sodium circuit and the SGHDR circuit consist of sodium tanks for various applications such as storage, transfer, pressure mitigation and to take care of volumetric expansion. The sodium tanks are thin walled cylindrical vertical vessels with predominantly torispherical dished heads at the top and bottom. These tanks are provided with pull-out nozzles which were successfully made by cold forming. Surface thermocouples and heaters, wire type leak detectors are provided on these tanks. These tanks are insulated with bonded mineral wool and with aluminum cladding. All the butt welds in pressure parts were subjected to 100% Radiographic examination. These tanks were subjected to hydrotest, pneumatic test and helium leak test under vacuum. The principal material of construction being stainless steel for the sodium tanks shall be handled with care following best engineering practices coupled with stringent QA requirements to avoid stress corrosion cracking in the highly brackish environment. Intergranular stress corrosion cracking and hot cracking are additional factors to be addressed for the welding of stainless steel components. Pickling and passivation, Testing with chemistry controlled demineralised water are salient steps in manufacturing. Corrosion protection and preservation during fabrication, erection and post erection is a mandatory stipulation in the QA programme. Enhanced reliability of welded components can be achieved mainly through quality control and quality assurance procedures in addition to design and metallurgy. The diverse and redundant inspections in terms of both operator and technique are required for components where zero failure is desired & claimed. This paper highlights the step by step quality management methodologies adopted during the manufacturing of high temperature thin walled austenitic stainless steel sodium tanks of PFBR.


Sign in / Sign up

Export Citation Format

Share Document