scholarly journals Hydrogen Peroxide Bleaching. New Application of Hydrogen Peroxide in Chemical Pulp Bleaching.

1998 ◽  
Vol 52 (5) ◽  
pp. 623-629 ◽  
Author(s):  
Tetsuo Koshitsuka
2011 ◽  
Vol 233-235 ◽  
pp. 1328-1331 ◽  
Author(s):  
Qiang Zhao ◽  
De Zhi Sun ◽  
Ming Yang Zhang ◽  
Su Min Kang

The Mg(OH)2-based peroxide bleaching process of Nigra poplar CTMP pulp was confirmed. The optimal bleaching condition were as follows: 4% H2O2,1% Mg(OH)2, 15% pulp consistency, the reaction temperature was 80°C and the suitable reaction time was 2 hours. The Mg(OH)2-based bleaching process shows significant benefits over sodium hydroxide process. In contrast, magnesium hydroxide bleaching generates higher pulp yield and lower effluent COD at the same chemical dosage. The study shows peroxide bleaching of CTMP pulp with magnesium hydroxide as alkali source is to be an option for the high-yield pulp bleaching.


Holzforschung ◽  
2003 ◽  
Vol 57 (5) ◽  
pp. 503-512 ◽  
Author(s):  
C. S. R. Freire ◽  
A. J. D. Silvestre ◽  
C. Pascoal Neto

Summary The structural changes of E. globulus wood extractives during bleaching with chlorine dioxide (D), oxygen (O), ozone (Z) and hydrogen peroxide (P) were studied. The detailed characterisation of the extractive derivatives detected in the partially bleached D, O, P and Z pulps was achieved by performing reactions of pure reference compounds with the different bleaching agents. The results show that the unsaturated sterols and fatty acids are extensively degraded during chlorine dioxide and ozone bleaching and only partially degraded during oxygen and hydrogen peroxide bleaching. The corresponding saturated extractives as well as the long chain aliphatic alcohols and ω-hydroxyfatty acids were stable during bleaching. The main oxidation products of β-sitosterol and oleic and linoleic acids, including one chlorinated derivative of linoleic acid, were identified here for the first time in E. globulus bleached pulps and bleaching filtrates.


Holzforschung ◽  
2000 ◽  
Vol 54 (4) ◽  
pp. 407-412 ◽  
Author(s):  
L. Kühne ◽  
J. Odermatt ◽  
T. Wachter

Summary A binuclear [Mn(III)Mn(IV)(μ-O)2(μ-CH3COO)L](ClO4−)2 complex with L = 1,2 Bis-(4,7-dimethyl-1,4,7-triazacyclonon-1-yl)-ethane, described as a selective catalyst in hydrogen peroxide bleaching of softwood pulps, was tested in hardwood kraft pulp bleaching. The catalyst application gave rise to a higher consumption of peroxide which resulted in higher pulp brightness. The delignification improvement caused by the catalyst was shown to be much lower compared to catalysed peroxide bleaching of softwood kraft pulp. In contrast to the results of softwood pulp bleaching no selectivity improvements could be found when using the catalyst in bleaching of eucalyptus kraft pulp.


TAPPI Journal ◽  
2019 ◽  
Vol 18 (7) ◽  
pp. 409-414
Author(s):  
N. DAS ◽  
S.K. BOSE ◽  
R.C. FRANCIS

Peroxide bleaching of softwood and hardwood (eucalypt) kraft pulps was performed in solutions of sodium bicarbonate (NaHCO3), sodium carbonate (Na2CO3), and sodium hydroxide (NaOH). The conventional P stage (hydrogen peroxide + sodium hydroxide; H2O2 + NaOH) was the most effective brightening system without an additional activator. However, peroxide activation by bicarbonate anion (HCO3–) was obvious in all cases where NaHCO3 or Na2CO3 was used. When N,N,N’,N’-tetraacetylethylenediamine (TAED) was added to the bleaching system, Na2CO3 as the alkali source afforded equal or slightly higher bleached brightness compared to NaOH usage for both the softwood and hardwood pulps. This outcome is attributed to simultaneous peroxide activation by HCO3 and TAED. When applied to the eucalypt pulp, the H2O2/Na2CO3/TAED bleaching system also decreased the brightness loss due to thermal reversion.


TAPPI Journal ◽  
2012 ◽  
Vol 11 (7) ◽  
pp. 37-46 ◽  
Author(s):  
PEDRO E.G. LOUREIRO ◽  
SANDRINE DUARTE ◽  
DMITRY V. EVTUGUIN ◽  
M. GRAÇA V.S. CARVALHO

This study puts particular emphasis on the role of copper ions in the performance of hydrogen peroxide bleaching (P-stage). Owing to their variable levels across the bleaching line due to washing filtrates, bleaching reagents, and equipment corrosion, these ions can play a major role in hydrogen peroxide decomposition and be detrimental to polysaccharide integrity. In this study, a Cu-contaminated D0(EOP)D1 prebleached pulp was subjected to an acidic washing (A-stage) or chelation (Q-stage) before the alkaline P-stage. The objective was to understand the isolated and combined role of copper ions in peroxide bleaching performance. By applying an experimental design, it was possible to identify the main effects of the pretreatment variables on the extent of metals removal and performance of the P-stage. The acid treatment was unsuccessful in terms of complete copper removal, magnesium preservation, and control of hydrogen peroxide consumption in the following P-stage. Increasing reaction temperature and time of the acidic A-stage improved the brightness stability of the D0(EOP)D1AP bleached pulp. The optimum conditions for chelation pretreatment to maximize the brightness gains obtained in the subsequent P-stage with the lowest peroxide consumption were 0.4% diethylenetriaminepentaacetic acid (DTPA), 80ºC, and 4.5 pH.


2011 ◽  
Vol 236-238 ◽  
pp. 1307-1312
Author(s):  
Chao Jun Wu ◽  
Chuan Shan Zhao ◽  
Jun Li ◽  
Ke FU Chen

In this paper, the effect of microwave treatment on the hydrogen peroxide bleaching of Soda-AQ wheat-straw pulp was investigated. The results showed that microwave treatment could increase the brightness of the hydrogen peroxide bleached pulp. The fiber coarseness of microwave enhancing peroxide bleached pulp was higher than that of the peroxide bleached pulp. However, the arithmetic average fiber length, the length weighted average fiber length and weight weighted average fiber length of the former was lower than that of the latter. Fourier transform infra-red spectroscopy (FTIR) and X-ray diffraction (XRD) spectra showed that CrI(%) crystallinity of microwave enhancing peroxide bleached pulp was similar as that of the peroxide bleached pulp but all higher than that of the Soda-AQ wheat-straw pulp. N·O′KI infra-red crystalline index of microwave enhancing peroxide bleached pulp were lower than that of the peroxide bleached pulp. The FTIR spectra of lignin showed that the microwave treatment had some influences on the methoxyl and phenolic group in lignin.


2012 ◽  
Vol 37 (5) ◽  
pp. 526-531 ◽  
Author(s):  
CRG Torres ◽  
CF Ribeiro ◽  
E Bresciani ◽  
AB Borges

SUMMARY The aim of the present study was to evaluate the effect of 20% and 35% hydrogen peroxide bleaching gels on the color, opacity, and fluorescence of composite resins. Seven composite resin brands were tested and 30 specimens, 3-mm in diameter and 2-mm thick, of each material were fabricated, for a total of 210 specimens. The specimens of each tested material were divided into three subgroups (n=10) according to the bleaching therapy tested: 20% hydrogen peroxide gel, 35% hydroxide peroxide gel, and the control group. The baseline color, opacity, and fluorescence were assessed by spectrophotometry. Four 30-minute bleaching gel applications, two hours in total, were performed. The control group did not receive bleaching treatment and was stored in deionized water. Final assessments were performed, and data were analyzed by two-way analysis of variance and Tukey tests (p<0.05). Color changes were significant for different tested bleaching therapies (p<0.0001), with the greatest color change observed for 35% hydrogen peroxide gel. No difference in opacity was detected for all analyzed parameters. Fluorescence changes were influenced by composite resin brand (p<0.0001) and bleaching therapy (p=0.0016) used. No significant differences in fluorescence between different bleaching gel concentrations were detected by Tukey test. The greatest fluorescence alteration was detected on the brand Z350. It was concluded that 35% hydrogen peroxide bleaching gel generated the greatest color change among all evaluated materials. No statistical opacity changes were detected for all tested variables, and significant fluorescence changes were dependent on the material and bleaching therapy, regardless of the gel concentration.


2007 ◽  
Vol 25 (3) ◽  
pp. 288-293 ◽  
Author(s):  
Sandra Abrantes ◽  
Emília Amaral ◽  
Ana Paula Costa ◽  
Anatoly A. Shatalov ◽  
Ana Paula Duarte

Sign in / Sign up

Export Citation Format

Share Document