scholarly journals Effects of Monochromatic Light Irradiation by LED on the Internodal Stem Elongation of Seedlings in Eggplant, Leaf Lettuce and Sunflower

2006 ◽  
Vol 18 (2) ◽  
pp. 160-166 ◽  
Author(s):  
Tadayoshi HIRAI ◽  
Wakanori AMAKI ◽  
Hiroyuki WATANABE
2006 ◽  
Vol 29 (4) ◽  
pp. 365-370 ◽  
Author(s):  
Md. Zahangir Alam ◽  
Tomoko Ohmachi ◽  
Tomonari Ogata ◽  
Takamasa Nonaka ◽  
Seiji Kurihara

2021 ◽  
Author(s):  
Xin Li ◽  
Shencheng Fu ◽  
Jingying Miao ◽  
Mingyue Zhang ◽  
Xintong Zhang

2013 ◽  
Vol 1526 ◽  
Author(s):  
Hector Duran-Munoz ◽  
Raul Perez-Salas ◽  
Thomas Piters

ABSTRACTIn this work a survey of possible optical stimulation processes in irradiated KCl:Eu with a focusing on photo-transfer thermoluminescence (PTTL) effects are shown. For different wavelengths in the range from 180 to 800 nm a cycle of measurements was performed, each comprising of a TL measurement after light irradiation, a TL measurement after beta irradiation for reference purposes and a PTTL measurement. The latter was obtained by applying first a beta irradiation, then a partial readout up to a certain end temperature followed by a monochromatic light irradiation of a specific wavelength and finally a TL measurement. This procedure was repeated for different partial readout end temperatures. From the results the existence of at least four different photo-transfer processes, induced by 310, 245 and 550 nm light are deduced. The photo transfer process induced by an approximate value of 245 nm produced a TL glow peak not seen before in beta or light induced TL. Furthermore it was observed that some of the TL peaks created by light of 240 and 260 nm were strongly sensitized after a beta irradiation and a partial readout.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 947
Author(s):  
O New Lee ◽  
Keita Fukushima ◽  
Han Yong Park ◽  
Saneyuki Kawabata

Lettuce plants tend to undergo floral initiation by elongation of flower stalks (bolting) under high-temperature and long-day conditions, which is a serious problem for summer lettuce production. Our objective was to generate a high-density genetic map using SNPs obtained from genotyping-by-sequencing (GBS) analysis of F5 recombinant inbred lines (RILs) and to map QTLs involved in stem growth and flowering time in lettuce. A set of 127 intra-specific RIL mapping populations derived from a cross between two varieties, green and red leaf lettuce, were used to identify QTLs related to the number of days from sowing to bolting (DTB), to flowering of the first flower (DTF), to seed-setting of the first flower (DTS), and the total number of leaves (LN), plant height (PH), and total number of branches of main inflorescence (BN) for two consecutive years. Of the 15 QTLs detected, one that controls DTB, DTF, DTS, LN, and PH detected on LG 7, and another QTL that controls DTF, DTS, and PH detected on LG 1. Analysis of the genomic sequence corresponding to the QTL detected on LG 7 led to the identification of 22 putative candidate genes. A consistent QTL related to bolting and flowering time, and corresponding candidate genes has been reported. This study will be valuable in revealing the genetic basis of stem growth and flowering time in lettuce.


2014 ◽  
Author(s):  
Akihiro Shimokawa ◽  
Yuki Tonooka ◽  
Misato Matsumoto ◽  
Hironori Ara ◽  
Hiroshi Suzuki ◽  
...  

Because global climate change has made agricultural supply unstable, plant factories are expected to be a safe and stable means of food production. As the light source of a plant factory or controlled greenhouse, the light emitting diode (LED) is expected to solve cost problems and promote plant growth efficiently. In this study, we examined the light condition created by using monochromatic red and blue LEDs, to provide both simultaneous and alternating irradiation to leaf lettuce. The result was that simultaneous red and blue irradiation promoted plant growth more effectively than monochromatic and fluorescent light irradiation. Moreover, alternating red and blue light accelerated plant growth significantly even when the total light intensity per day was the same as with simultaneous irradiation. The fresh weight in altering irradiation was almost two times higher than with fluorescent light and about 1.6 times higher than with simultaneous irradiation. The growth-promoting effect of alternating irradiation of red and blue light was observed in different cultivars. From the results of experiments, we offer a novel plant growth method named "Shigyo Method", the core concept of which is the alternating irradiation of red and blue light.


2014 ◽  
Vol 5 ◽  
pp. 801-811 ◽  
Author(s):  
Weiying Zhang ◽  
Yuexiang Li ◽  
Shaoqin Peng ◽  
Xiang Cai

A graphene oxide (GO) solution was irradiated by a Xenon lamp to form reduced graphene oxide (RGO). After irradiation, the epoxy, the carbonyl and the hydroxy groups are gradually removed from GO, resulting in an increase of sp2 π-conjugated domains and defect carbons with holes for the formed RGO. The RGO conductivity increases due to the restoration of sp2 π-conjugated domains. The photocatalytic activity of EY-RGO/Pt for hydrogen evolution was investigated with eosin Y (EY) as a sensitizer of the RGO and Pt as a co-catalyst. When the irradiation time is increased from 0 to 24 h the activity rises, and then reaches a plateau. Under optimum conditions (pH 10.0, 5.0 × 10−4 mol L−1 EY, 10 μg mL−1 RGO), the maximal apparent quantum yield (AQY) of EY-RGO24/Pt for hydrogen evolution rises up to 12.9% under visible light irradiation (λ ≥ 420 nm), and 23.4% under monochromatic light irradiation at 520 nm. Fluorescence spectra and transient absorption decay spectra of the EY-sensitized RGO confirm that the electron transfer ability of RGO increases with increasing irradiation time. The adsorption quantity of EY on the surface of RGO enhances, too. The two factors ultimately result in an enhancement of the photocatalytic hydrogen evolution over EY-RGO/Pt with increasing irradiation time. A possible mechanism is discussed.


Catalysts ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 627 ◽  
Author(s):  
Arsou Arimi ◽  
Ralf Dillert ◽  
Gerald Dräger ◽  
Detlef W. Bahnemann

A commercial carbon-modified titanium dioxide, KRONOClean 7000, was applied as a UV(A) and visible-light active photocatalyst to investigate the conversion of the antipsychotic pharmaceutical chlorpromazine in aqueous phase employing two monochromatic light sources emitting at wavelengths of 365 and 455 nm. Photocatalytic and photolytic conversion of chlorpromazine under both anaerobic and aerobic conditions was analyzed using a HPLC-MS technique. Depending on the irradiation wavelength and presence of oxygen, varying conversion rates and intermediates revealing different reaction pathways were observed. Upon visible light irradiation under aerobic conditions, chlorpromazine was only converted in the presence of the photocatalyst. No photocatalytic conversion of this compound under anaerobic conditions upon visible light irradiation was observed. Upon UV(A) irradiation, chlorpromazine was successfully converted into its metabolites in both presence and absence of the photocatalyst. Most importantly, chlorpromazine sulfoxide, a very persistent metabolite of chlorpromazine, was produced throughout the photolytic and photocatalytic conversions of chlorpromazine under aerobic conditions. Chlorpromazine sulfoxide was found to be highly stable under visible light irradiation even in the presence of the photocatalyst. Heterogeneous photocatalysis under UV(A) irradiation resulted in a slow decrease of the sulfoxide concentration, however, the required irradiation time for its complete removal was found to be much longer compared to the removal of chlorpromazine at the same initial concentration.


Sign in / Sign up

Export Citation Format

Share Document