scholarly journals Effect of Temperature from Flowering on Wasabi Embryo Maturation and Seed Germination

2021 ◽  
Vol 33 (4) ◽  
pp. 157-163
Author(s):  
Fujio BABA ◽  
Susumu HISAMATSU ◽  
Zentaro INABA
Weed Science ◽  
2021 ◽  
pp. 1-26
Author(s):  
Gulshan Mahajan ◽  
Asheneel Prasad ◽  
Bhagirath Singh Chauhan

Abstract Sumatran fleabane [Conyza sumatrensis (Retz.) Walker] is an emerging weed in the Australian cropping region. Populations resistant to glyphosate have evolved in Australia, creating the demand for information regarding the seed germination ecology of glyphosate-resistant (R) and glyphosate susceptible (S) populations of C. sumatrensis. A study was conducted to examine the effect of temperature, light intensity, salt stress, osmotic stress, and burial depth on the germination and emergence of two populations (R and S) of C. sumatrensis. Both populations were able to germinate over a wide range of alternating day/night temperatures (15/5 to 35/25 C). In light/dark conditions, the R population had higher germination than the S population at 20/10 and 35/25 C. In the dark, the R population had higher germination than the S population at 25/15 C. In the dark, germination was inhibited at 30/20 C and above. Averaged over populations, seed germination of C. sumatrensis was reduced by 97% at zero light intensity (completely dark conditions) compared with full light intensity. Seed germination of C. sumatrensis reduced by 17 and 85% at an osmotic potential of −0.4, and −0.8 MPa, respectively, compared with the control treatment. The R population had lower germination (57%) than the S population (72%) at a sodium chloride concentration of 80 mM. Seed germination was highest on the soil surface and emergence was reduced by 87 and 90% at burial depths of 0.5 and 1.0 cm, respectively. Knowledge gained from this study suggests that a shallow-tillage operation to bury weed seeds in conventional tillage systems, and retention of high residue cover in a zero-till system on the soil surface may inhibit the germination of C. sumatrensis. This study also warrants that the R population may have a greater risk of invasion over a greater part of a year due to germination over a broader temperature range.


2020 ◽  
Vol 48 (1) ◽  
pp. 11-20
Author(s):  
Mei Zhao ◽  
Ron Walcott

Bacterial fruit blotch (BFB), caused by Acidovorax citrulli, is a seed-transmitted disease of cucurbit crop species. During seed-to-seedling transmission of BFB, A. citrulli initially grows as a saprophyte on germinating seeds and subsequently switches to a pathogenic mode. We investigated the effect of temperature on A. citrulli colonisation of germinating watermelon seeds. Seeds were vacuum-infiltrated with 106 CFU/ml A. citrulli, germinated at 28°C and 100% relative humidity, and transferred to 40°C at different times. Mean BFB incidence was significantly lower for seeds that were sown at 28°C and transferred to 40°C three days after sowing (DAS), compared with seeds incubated constantly at 28°C. Seeds showed reduced mean BFB transmission percentages when transferred from 28 to 40°C at 3 DAS, regardless of initial A. citrulli concentration. The effect of increased temperature on BFB seedling transmission was reversible regardless of the initial A. citrulli inoculum concentration. Furthermore, the A. citrulli population on germinating watermelon seedlings that were transferred from 28 to 40°C at 3 DAS was significantly lower than seedlings maintained at 28°C. We conclude that A. citrulli cells associated with germinating watermelon seeds are more sensitive to elevated temperature during the first 3 DAS relative to the later days.


2019 ◽  
Vol 79 (2) ◽  
pp. 323-329 ◽  
Author(s):  
Carlos De la Cuadra ◽  
Alexis K. Vidal ◽  
Felipe Lagomarsino ◽  
Patricia Peñaloza ◽  
Leví M. Mansur ◽  
...  

2019 ◽  
Vol 41 (4) ◽  
Author(s):  
Érica Fernandes Leão-Araújo ◽  
Eli Regina Barboza de Souza ◽  
Nei Peixoto ◽  
Francisco Guilhien Gomes-Júnior

Abstract The cultivation of native fruit species depends on the existence of consistent technical and scientific information on the germination and vigor of seeds for efficient management by seedling producers. The evaluation of the physiological potential of seeds is performed through germination and vigor tests, which must be standardized to ensure the generation of accurate information. For Campomanesia adamantium, information on parameters for conducting physiological tests is scarce. The aims of this work were (i) to evaluate the effect of temperature and seed positioning on the substrate for seed germination and vigor, and (ii) to characterize and describe the essential structures and main types of seedling abnormality. After harvest, fruits were pulped and, after seed extraction, germination tests were carried out for 42 days at three temperatures (20, 25 and 30 °C), with seeds positioned in the germination substrate in two ways (between paper and on paper). Seed vigor was evaluated by means of the first germination count (performed on the 20th day) and the germination rate index. The temperature and substrate interaction did not influence variables under study. The position of seeds on the substrate did not influence the physiological potential results. No differences were observed between seed germination temperatures; however, seeds submitted to germination at 25 °C showed higher vigor compared to the other temperatures. Germination and vigor tests, based on seedling performance, should be performed at constant temperature of 25 °C and seed positioning between paper and on paper may be used. Germination in C. adamantium was characterized as epigeal.


2013 ◽  
Vol 111 ◽  
pp. 50-53 ◽  
Author(s):  
Liyan Yin ◽  
Ruifen Zhang ◽  
Zuoming Xie ◽  
Caiyun Wang ◽  
Wei Li

Sign in / Sign up

Export Citation Format

Share Document