INFORMATION-ANALYTICAL SYSTEM FOR MANAGING GEODYNAMIC RISKS

Author(s):  
N. Topolsky ◽  
◽  
V. Minaev ◽  
A. Mokshantsev ◽  
D. Grachev ◽  
...  
Keyword(s):  
2018 ◽  
Vol 5 (1) ◽  
pp. 31-36
Author(s):  
Md Monirul Islam ◽  
Muztuba Ahbab ◽  
Md Robiul Islam ◽  
Md Humayun Kabir

For many solitary wave applications, various approximate models have been proposed. Certainly, the most famous solitary wave equations are the K-dV, BBM and Boussinesq equations. The K-dV equation was originally derived to describe shallow water waves in a rectangular channel. Surprisingly, the equation also models ion-acoustic waves and magneto-hydrodynamic waves in plasmas, waves in elastic rods, equatorial planetary waves, acoustic waves on a crystal lattice, and more. If we describe all of the above situation, we must be needed a solution function of their governing equations. The Tan-cot method is applied to obtain exact travelling wave solutions to the generalized Korteweg-de Vries (gK-dV) equation and generalized Benjamin-Bona- Mahony (BBM) equation which are important equations to evaluate wide variety of physical applications. In this paper we described the soliton behavior of gK-dV and BBM equations by analytical system especially using Tan-cot method and shown in graphically. GUB JOURNAL OF SCIENCE AND ENGINEERING, Vol 5(1), Dec 2018 P 31-36


2010 ◽  
Vol 6 (3) ◽  
pp. 39-46
Author(s):  
V.A. Pepeljaev ◽  
◽  
P.S. Knopov ◽  
K.L. Atoyev ◽  
V.B. Bigdan ◽  
...  

Author(s):  
Mary Ann Nailos ◽  
Dan Stein ◽  
Lawrence T. Nielsen ◽  
Anna Iwasinska

Abstract The detection and identification of substances that give rise to aromas and off-odors is often a difficult task. Perception of odors is very subjective and odor detection thresholds vary from person to person. The identification of trace levels of compounds responsible for perceived odors is difficult using conventional analytical tools. This paper will focus on a novel method for sampling and analyzing aromatic volatile compounds using an analytical system specifically designed for odor analysis.


1971 ◽  
Vol 125 (4) ◽  
pp. 1009-1018 ◽  
Author(s):  
R. E. Chambers ◽  
J. R. Clamp

The stability of monosaccharides in methanolic hydrochloric acid of different strengths and at different temperatures was determined. They are generally stable for 24h in methanolic 1m- and 2m-hydrochloric acid at both 85°C and 100°C, but undergo considerable destruction in methanolic 4m- and 6m-hydrochloric acid at 100°C. Analysis of glycopeptides and oligosaccharides of known composition showed that release of carbohydrate was complete within 3h in methanolic 1m-hydrochloric acid at 85°C. Removal of methanolic hydrochloric acid by rotary evaporation resulted in considerable losses of monosaccharides, which could be prevented by prior neutralization. Methanolysis caused extensive de-N-acetylation of acetamidohexoses, so that a re-N-acetylation step is necessary in the analytical procedure. The addition of acetic anhydride for this purpose also prevented loss of internal standard by adsorption on the insoluble silver salts used in neutralization. Several trimethylsilylating agents were studied and suitable conditions are recommended. The effects on the analytical system of water and some common organic and inorganic contaminants are assessed.


Author(s):  
Josep Miquel Bauça ◽  
Andrea Caballero ◽  
Carolina Gómez ◽  
Débora Martínez-Espartosa ◽  
Isabel García del Pino ◽  
...  

AbstractObjectivesThe stability of the analytes most commonly used in routine clinical practice has been the subject of intensive research, with varying and even conflicting results. Such is the case of alanine aminotransferase (ALT). The purpose of this study was to determine the stability of serum ALT according to different variables.MethodsA multicentric study was conducted in eight laboratories using serum samples with known initial catalytic concentrations of ALT within four different ranges, namely: <50 U/L (<0.83 μkat/L), 50–200 U/L (0.83–3.33 μkat/L), 200–400 U/L (3.33–6.67 μkat/L) and >400 U/L (>6.67 μkat/L). Samples were stored for seven days at two different temperatures using four experimental models and four laboratory analytical platforms. The respective stability equations were calculated by linear regression. A multivariate model was used to assess the influence of different variables.ResultsCatalytic concentrations of ALT decreased gradually over time. Temperature (−4%/day at room temperature vs. −1%/day under refrigeration) and the analytical platform had a significant impact, with Architect (Abbott) showing the greatest instability. Initial catalytic concentrations of ALT only had a slight impact on stability, whereas the experimental model had no impact at all.ConclusionsThe constant decrease in serum ALT is reduced when refrigerated. Scarcely studied variables were found to have a significant impact on ALT stability. This observation, added to a considerable inter-individual variability, makes larger studies necessary for the definition of stability equations.


Sign in / Sign up

Export Citation Format

Share Document