Formulation and Evaluation of Bilayered Tablets Containing Immediate Release Layer of Glimepiride Complexed with Mangifera indica Gum and Sustained Release Layer Containing Metformin HCL by Using HPMC as Release Retardant

Author(s):  
Hemalatha S. ◽  
Srikanth P. ◽  
Mounica Sai G.

In present investigation an attempt has been made to design and develop the Bilayered tablet of Glimepiride and Metformin using Mangifera Indica Gum (MIG) and HPMC as Immediate Release and Sustained Release Layer polymers. Glimepiride and Metformin are oral-hypoglycaemic drugs which lower blood glucose level and have been selected to prepare Bilayered tablets. Glimepiride immediate release layer was prepared using MIG by wet granulation technique and Metformin sustained release layer was prepared using HPMC by dry granulation technique. Prepared Bilayered tablets were evaluated for parameters like thickness, diameter, weight variation, hardness, friability, disintegration and in-vitro release studies. All the prepared tablets were of smooth surface and elegant texture. The weights of the tablets were in the range of 540±0.551 mg. The thicknesses of the tablet were in the range of 4±0.05mm. The drug content uniformity study showed uniform dispersion of drug throughout the formulation in the range of 97.16±0.50%. The hardness was in the range of 4.0±0.5 kg/cm2 and friability is in the range of 0.67±0.06%. The bilayered tablets were also subjected to model fitting analysis to know the order and mechanism of drug release from the formulation by treating the data according to zeroorder, first-order, Higuchi and peppas equations.The bioequivalence studies conducted between prepared and marketed (Glycomate) bilayered tablet showed the similarity factor value of 70.120 for IR layer and 57.689 for SR layer.

Author(s):  
Ankit Acharya ◽  
Mohammed Gulzar Ahmed ◽  
Ravi Chaudhari ◽  
Renukaradhya Chitti

Divalproex sodium is considered as the most important antiepileptic drug and widely used for treatment of epilepsy and bi-polar disorders and prophylaxis of migraine. The present work has been done to formulate bi-layered tablet of Divalproex sodium containing immediate release layer and sustained release layer. The FTIR study revealed that there was no interaction between drug and polymer and combination. Both layers were prepared by wet granulation technique as poor flow property exhibited by pure drug. The immediate release layer was formulated by using superdisintegrants and evaluated for physical parameters, disintegration time and in vitro drug release. The optimized immediate release layer (IF6) with highest in vitro release of 98.11 was selected for bi-layered tablet formulation. HPMC K4M and HPMC K100M polymer were used to retard the drug release from sustained release layer in different proportion and combination and evaluated for physical parameter along with in vitro drug release studies. The optimized sustained release layer (SF8) which extends the Divalproex sodium release more than 18 hrs was selected. Finally, bi-layered tablets were prepared by double compression of selected sustained release layer and immediate release layer of Divalproex sodium. The tablets were evaluated for hardness, thickness, weight variation, friability, drug content uniformity and in vitro drug release. All the physical parameters were in acceptable limit of pharmacopeial specification. The stability studies, shown the bi-layer tablet was stable at 40oC / 75% RH for a period of 3 months.  


Author(s):  
Rablee Saikia ◽  
Bhanu Pratap Sahu

Objective: The purpose of this study was to develop and evaluate bi-layer tablets for the immediate and controlled release of Metformin Hydrochloride for effective treatment of type 2 Diabetes mellitus.Methods: The immediate release layer was prepared by using super disintegrants like cross carmellose sodium, sodium starch glycolate and sustained release layer was prepared by using hydrophilic polymer like HPMC K 100 and PVP. Various proportions of super disintegrants and polymer were used to select the best formulation composition. Bilayer tablet of metformin was prepared by wet granulation method and was evaluated for physical characteristics like hardness, weight variation, and friability. In vitro release of drug was performed in USP type II dissolution test apparatus using phosphate buffer (pH 6.8) as dissolution media and dissolution was continued for 9 h for the sustained release layer. For immediate release layer, readings were recorded in each 10 min time interval for the first 1h.Results: From the obtained result it was found that all the formulations were within the limit of the standard. The hardness was found to be in the ranges from 5.1 to 5.5 kg/cm2, weight variation was in the range 0.53% to 0.83%, friability of all the formulations was within the range (<1%)and percentage of drug content was more than 97%. The drug release of the tablet was in the range of 85%-91% in 9 h.Conclusion: From the result obtained, it is found that the formulation F6 satisfies all the criteria as sustained release tablet for the effective treatment of type 2Diabetes mellitus.  


Author(s):  
Mayuri B. Patil ◽  
Avish D. Maru ◽  
Jayshree S. Bhadane

The aim of the present study was to design and evaluate bilayer tablets of metformin hydrochloride as sustained release form for the treatment of Type-II diabetes mellitus. The basic aim of any Bi-layer tablet formulation is to separate physically or chemically incompatible ingredients and to produce repeat action or prolonged action of tablet. They are many drugs for treating type-II diabetes. Sulphonyl urea and biguanides are used commonly by a wide section of patients. Melt granulation process was used for the formulation of sustained comprising metformin layer and wet granulation of immediate comprising layer of glimepiride. The precompression studies like bulk density, tapped density, angle of repose, compressible index and post formulation studies includes weight variation, hardness, thickness, friability and dissolution study. The in-vitro release profile of Glimepiride was dissolved within 45 min, and Metformin Hydrochloride was able to release more than 12 hrs. They all the formulation was optimized formula due to its higher rate of dissolution and collate all other parameters with the official specifications.


2018 ◽  
Vol 10 (2) ◽  
pp. 105
Author(s):  
Ashutosh Roda ◽  
Prabhakara Prabhu ◽  
Akhilesh Dubey

Objective: Buccal patch is a non-dissolving thin matrix modified release dosage form which was developed to administer into the unconscious and less co-operative patients.Methods: The mucoadhesive buccal patches of hydrochlorothiazide (HCZ) and atenolol (ATN) were prepared by solvent casting technique using various concentrations of sodium alginate, hydroxyl propyl methyl cellulose, carbopol 934P and sodium carboxy methyl cellulose polymer and polyvinyl alcohol as a backing layer. The formulated patches were evaluated for their physicochemical parameters like thickness, weight variation, surface pH, content uniformity, folding endurance, swelling percentage studies and tensile strength, in vitro and ex vivo drug permeation. Results: The infra-red (IR) spectra showed no interaction between drug and polymer. Physicochemical characteristics of all the samples were found to be satisfactory and well within the range. Swelling of the films were increased with the increasing content of the polymers and it was found that swelling front erosion was comparably slower in the formulations with the carbopol 934 and HPMC. This is probably due to their marked viscous properties and therefore formulation provided sustained release of the drug. The percentage drug content of all the formulations were found to be in the range of 97-99 %. Among the patches, FC (Carbopol 934 and HPMC) patches were considered satisfactory for maintaining the in vitro residence in the oral cavity for almost 8h. Formulations FD (with CP and NaCMC) and FC showed high tensile strength and % E/B which is an indication of the strength and elasticity of the patch. The films were exhibited sustained release for more than 6 h which was confirmed by the in vitro release data and kinetic data reveals the combination of diffusion and erosion mechanism. The best mucoadhesive performance and matrix controlled release was exhibited by the formulation FC.Conclusion: The formulation of HCZ and ATN mucoadhesive buccal patch was found to be satisfactory and reasonable.


Author(s):  
Manoj Kr. Das ◽  
Bhanu P. Sahu ◽  
Jahan Nur Rahman Hazarika

Objective: The purpose of this study was to develop and evaluate bilayer tablet for the immediate and controlled release of Allicin (Garlic Extract) for effective treatment of Hypertension.Methods: The immediate release layer was prepared by using super disintegrants-sodium starch glycolate and binder used xantham gum and the sustained release layer was prepared by using hydrophilic polymer like HPMC K 100 and PVP. Before preparation of the tablets, all the pre-formulation parameters were checked and the tablet of Allicin were prepared by direct compression method and was evaluated for physical characteristics like hardness, weight variation, drug content and friability. In vitro release of drug was performed USP type II dissolution test apparatus using phosphate buffer (pH 7.4) as dissolution media and dissolution was continued for 8 hrs for the sustained release layer.Results: It was found that all the formulations were within the limit of the standard. The drug release of the tablet was in the range of 66%-83% in 8 h.Conclusion: It was concluded that the F4 formulation showed the optimum result as a bilayer tablet for the effective treatment of hypertension. 


INDIAN DRUGS ◽  
2014 ◽  
Vol 51 (01) ◽  
pp. 34-40
Author(s):  
V.L Narasaiah ◽  
◽  
Ch. Praneetha ◽  
P Mallika ◽  
K. Pullamma ◽  
...  

The aim of this project was to develop fast dissolving tablets (FDT) of aceclofenac by wet granulation using super disintegrating agents such as cross carmellose sodium (CCS), Crospovidone (CP) and sodium starch glycolate (SSG) were formulated and evaluated. The tablets evaluated for thickness, hardness, friability weight variation, drug content, water absorption ratio, wetting time, disintegration time and in vitro dissolution studies. The in vitro release studies were conducted in pH 7.4 phosphate buffer. Different release models like zero order, first order, Higuchi and Korsmeyer-Peppas were applied to in vitro drug release data in order to evaluate drug release mechanisms and kinetics. The formulation ‘F4’ showed satisfactory physico-chemical properties and drug content uniformity. The formulation ‘F4’ follows first order kinetics and the mechanism of drug release was governed by Higuchi. The ‘n’ value showed between <0.5, it was followed that Fickian transport. The FTIR studies were conducted and it shows that there is no interaction between drug and excipients.


Author(s):  
Rai V. K. ◽  
Pathak N. ◽  
Bhaskar R. ◽  
Nandi B. C. ◽  
Dey S. ◽  
...  

The purpose of this research is to prepare Raloxifene Hydrochloride immediate release tablet by wet granulation technique. In order to obtain the best, optimized product six different formulations were developed. Different filler, binder, disintegrant and lubricant were taken as variables. Weight variation, thickness, hardness, friability, disintegration time, in-vitro release and pharmaceutical assay were studied as response variables. Sticking was observed when the formulation containing stearic acid and sodium stearyl fumarate. However, in the remaining four formulation containing magnesium stearate, no sticking was observed. The formulation NP061 was selected as an optimized product. The different physical properties and in-vitro release profile showed best comparable with reference product. Optimization has proven as an effective tool in product development.


Author(s):  
Natarajan R ◽  
N Patel ◽  
Rajendran N N ◽  
M Rangapriya

The main goal of this study was to develop a stable formulation of antihypertensive drugs telmisartan and hydrochlorothiazide as an immediate-release bilayer tablet and to evaluate the dissolution profile in comparison with a reference product. The formulation development work was initiated with wet granulation. Telmisartan was converted to its sodium salt by dissolving in aqueous solution of sodium hydroxide to improve solubility and drug release. Lactose monohydrate and microcrystalline cellulose were used as diluents. Starch paste is prepared in purified water and was used as the binder. Sodium starch glycolate is added as a disintegrating agent. Magnesium stearate was used as the lubricant. The prepared granules were compressed into a double-layer compression machine. The tablets thus formulated with higher proportion of sodium starch glycolate showed satisfactory physical parameters, and it was found to be stable and in vitro release studies are showed that formulation (F-T5H5) was 101.11% and 99.89% respectively. The formulation T5H5 is further selected and compared with the release profile of the innovator product, and was found to be similar (f2 factor) to that of the marketed product. The results suggest the feasibility of developing bilayer tablets consisting of telmisartan and hydrochlorothiazide for the convenience of patients with hypertension.  


Author(s):  
C Suja ◽  
Sismy C

The goal of this study was to formulate and evaluate norfloxacin sustained release tablets. Norfloxacin sustained release tablets were prepared by wet granulation method using two polymers such as HPMC K 100 M (hydrophilic polymer) and guar gum (natural polymer) and with three polymer ratios (0.5, 1.0 and 1.5). The prepared granules were evaluated to preformulation studies such as angle of repose, bulk density, tapped density, bulkiness, compressibility index and Hauser’s ratio. All the parameters shows that the granules having good flow properties. Then the formulated tablets were taken to evaluation studies such as hardness, weight variation, friability, drug content and thickness. All the parameters were within the acceptable limits. IR spectral analysis showed that there was no interaction between the drug and polymers. The in vitro release study was performed in phosphate buffer pH 7.4 at 293 nm. The in vitro release study showed that if the polymer ratio is increased, then the release of the drug is prolonged. HPMC K 100M shows a prolonged release when compared to guar gum.


2011 ◽  
Vol 47 (3) ◽  
pp. 545-553 ◽  
Author(s):  
Sathis Kumar Dinakaran ◽  
Santhos Kumar ◽  
David Banji ◽  
Harani Avasarala ◽  
Venkateshwar Rao

The purpose of this research study was to establish ziprasidone HCl NR 40 mg and trihexyphenidyl HCl SR 4mg in the form of bi-layer sustained release floating tablets. The tablets were prepared using sodium HPMC K4M / HPMC K15M as bio-adhesive polymers and sodium bicarbonate acting as a floating layer. Tablets were evaluated based on different parameters such as thickness, hardness, friability, weight variation, in vitro dissolution studies, content of active ingredient and IR studies. The physico-chemical properties of the finished product complied with the specifications. In vitro release from the formulation was studied as per the USP XXIII dissolution procedure. The formulations gave a normal release effect followed by sustained release for 12 h which indicates bimodal release of ziprasidone HCl from the matrix tablets. The data obtained was fitted to Peppas models. Analysis of n values of the Korsmeyer equation indicated that the drug release involved non-diffusional mechanisms. By the present study, it can be concluded that bi-layer tablets of ziprasidone HCl and trihexyphenidyl HCl will be a useful strategy for extending the metabolism and improving the bioavailability of Ziprasidone HCl and Trihexyphenidyl HCl.


Sign in / Sign up

Export Citation Format

Share Document