scholarly journals ANÁLISIS DE NORMATIVA AMBIENTAL Y MAPEO INSTITUCIONAL: HACIA UNA POLÍTICA CLIMÁTICA INTEGRADA PARA REDUCIR EL RIESGO ASOCIADO AL AUMENTO EN EL NIVEL DEL MAR EN EL CARIBE COLOMBIANO

Author(s):  
Martha Patricia Vides Casado ◽  
Paula Cristina Sierra Correa

Never before have the needs for climate adaptation been so urgent, in response to the change that takes place nowadays at an unprecedented pace. As the world coastal areas impacts increase, mainly due to the accelerated sea level rise (SLR), so the pressure on the administrations will grow to reach a coastal development allowing the reduction of its vulnerability, dependent on the basis of a correct integrated climate. The creation of an institutional dimension capable of withstanding this demanding development has been identifid as a key element to meet current climate variability, such as the future climate changes. This paper analyzes the regulatory and institutional landscape (domestic laws and policies) on which the managers of Colombia’s coastal areas count on by 2012, for the incorporation of the adaptation policies against SLR, being the Colombian Caribbean coastal area the special emphasis of this context. The results of the relationship between the management systems and the articles of domestic laws and policies are presented, accompanied by an institutional, intersectoral mapping, which has identifid the institutions responsible for carrying out the public policy-making aiming at the Colombian coastal area integrated climate policy. The analysis shows that, despite the existence of clearly defied management systems in the policy instruments, their practical application falls short of incorporating the sea level rise in the planning instruments, requiring an effective implementation in the short term and the optimization of the human, logistic, and fiancial resources.

2013 ◽  
Vol 13 (2) ◽  
Author(s):  
Iwan G. Tejakusuma

Coastal Vulnerability Index (CVI) was used to analyse the physical vulnerability to coastal disaster of the coastal areas of Makassar City. CVI will consider six variables namely geology, geomorphology, erosion and accretion, tidal range, average wave height and elevation. Geologically, coastal areas of Makassar comprise sand, gravel, clay and coral limestone. Geomorphologically, alluvial plain, sandy to gravelly beaches are predominant in the coastal areas. Both erosion and accretion occurred in the coastal areas in which accretion predominantly found in the southern part whereas erosion in the northern part of the city. Using DigitalElevation Model it can be observed that the elevation of the coastal areas of Makassar City is between 0 – 0.5 meter which is very vulnerable to sea level rise. Average tidal range was between 1.1 to 2 meter and wave height between 0 to 2.9 meter. CVI analyses showed that the coastal areas of Makassar City is vulnerable to sea level rise and hence to the coastal disaster. In addition, according to the analyses, Wajo, Biringkanaya and Tamalanrea districts are very vulnerable to sealevel rise and coastal disaster. Coastal development planning in these veryvulnerable areas will need special attention and specific measures.


2017 ◽  
Vol 50 (3) ◽  
pp. 1721
Author(s):  
A. Mavromatidi ◽  
E. Karymbalis

Tourism development in Greece has led to increasing pressure on coastal areas, which makes the study of sensitive coastal areas essential, in order to find appropriate solutions for their shielding. The aim of this study is an estimation of the effects of an anticipated sea level rise for the touristically developed part of Pieria Prefecture, which includes the settlements Paralia, Skala of Katerini, Olympic Beach, Korinos Beach and extends north to the area of the Kitrous saltworks and south to the mouth of Mavroneri river. Therefore the Coastal Vulnerability Index (CVI) is applied, in an attempt to determine the susceptible parts to the potential sea level rise. CVI depends on the following parameters: (a) coastal geomorphology, (b) coastal slope, (c) shoreline erosion/accretion rate, (d) relative sea-level rise fluctuations, (e) mean tidal range and (f) mean significant wave height. The classification of the coast, which is of particular socio-economic significance since it hosts urbanized areas, into five CVI classes (from very low vulnerability to very high vulnerability), showed that 43.6% of the entire coastline is of very high vulnerability. 


Shore & Beach ◽  
2021 ◽  
pp. 13-20
Author(s):  
Albert McCullough ◽  
David Curson ◽  
Erik Meyers ◽  
Matthew Whitbeck

Tidal marsh loss at Blackwater National Wildlife Refuge (NWR) has been a major concern of refuge managers in recent decades. The approximately 2,035 hectares (5,028 acres) of tidal marsh that have converted to open water in Blackwater NWR since 1938 (Scott et al. 2009) represent one of the most significant areas of marsh conversion within the Chesapeake Bay. In 2013, a suite of climate adaptation strategies focused on sea level rise was developed for Blackwater NWR and surrounding areas of Dorchester County by the Blackwater Climate Adaptation Project (BCAP). The BCAP is a collaboration of The Conservation Fund, Audubon Maryland-DC, and the U.S. Fish and Wildlife Service, assisted by the Maryland Department of Natural Resources (MD DNR), U.S. Geological Survey, and others. In 2016, the BCAP implemented a thin-layer placement (TLP) project at Shorter’s Wharf in Blackwater NWR on 16 hectares (40 acres) of subsiding and fragmenting tidal marsh dominated by Schoenoplectus americanus, Spartina alterniflora, and Spartina patens. The purpose of the project was to increase the 16 hectares’ (40 acres’) resiliency to climate-driven sea level rise and storm impacts. The project built up the marsh elevation by applying thin layers of sediment dredged from the adjacent Blackwater River. The sediment enhancement was designed to extend the longevity of the marsh and increase its resiliency by raising its surface elevation in relation to the tidal regime and to return the habitat to its prior high-marsh condition with S. patens dominating. The colonization of this site by saltmarsh sparrow would be an indicator of success in reaching this goal. Dredging operations in November and December 2016 placed approximately 19,900 cubic meters (26,000 cubic yards) of sediment on the project site. Post-restoration elevations obtained one year after material placement indicated that, although the target elevations were achieved in 78% of the surveyed placement area, the material was not distributed uniformly. Coarser material tended to stack up at the discharge location while the grain size declined and the slopes flattened toward the periphery of the discharge area. In 2017, natural vegetation had regenerated through the placed sediment with vigorous regrowth of S. americanus and S. alterniflora . This regrowth was supplemented with hand-planting of more than 200,000 plugs of S. patens. Vegetation monitoring is ongoing to determine the plant composition evolution within the placement site. Pre-dredge and post-dredge bathymetric surveys reveal 70% accretion nearly two years after dredging within the borrow area footprint.


2016 ◽  
Vol 75 (sp1) ◽  
pp. 1067-1071 ◽  
Author(s):  
Adrien Crapoulet ◽  
Arnaud Héquette ◽  
Franck Levoy ◽  
Patrice Bretel

Ocean Science ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 31-44 ◽  
Author(s):  
Caroline Rasquin ◽  
Rita Seiffert ◽  
Benno Wachler ◽  
Norbert Winkel

Abstract. Due to climate change an accelerated mean sea level rise is expected. One key question for the development of adaptation measures is how mean sea level rise affects tidal dynamics in shelf seas such as the North Sea. Owing to its low-lying coastal areas, the German Bight (located in the southeast of the North Sea) will be especially affected. Numerical hydrodynamic models help to understand how mean sea level rise changes tidal dynamics. Models cannot adequately represent all processes in overall detail. One limiting factor is the resolution of the model grid. In this study we investigate which role the representation of the coastal bathymetry plays when analysing the response of tidal dynamics to mean sea level rise. Using a shelf model including the whole North Sea and a high-resolution hydrodynamic model of the German Bight we investigate the changes in M2 amplitude due to a mean sea level rise of 0.8 and 10 m. The shelf model and the German Bight Model react in different ways. In the simulations with a mean sea level rise of 0.8 m the M2 amplitude in the shelf model generally increases in the region of the German Bight. In contrast, the M2 amplitude in the German Bight Model increases only in some coastal areas and decreases in the northern part of the German Bight. In the simulations with a mean sea level rise of 10 m the M2 amplitude increases in both models with largely similar spatial patterns. In two case studies we adjust the German Bight Model in order to more closely resemble the shelf model. We find that a different resolution of the bathymetry results in different energy dissipation changes in response to mean sea level rise. Our results show that the resolution of the bathymetry especially in flat intertidal areas plays a crucial role for modelling the impact of mean sea level rise.


2020 ◽  
Vol 12 (2) ◽  
pp. 296 ◽  
Author(s):  
Joao Catalao ◽  
Durairaju Raju ◽  
Giovanni Nico

Global mean sea level rise associated with global warming has a major impact on coastal areas and represents one of the significant natural hazards. The Asia-Pacific region, which has the highest concentration of human population in the world, represents one of the larger areas on Earth being threatened by the rise of sea level. Recent studies indicate a global sea level of 3.2 mm/yr as measured from 20 years of satellite altimetry. The combined effect of sea level rise and local land subsidence, can be overwhelming for coastal areas. The Synthetic Aperture Radar (SAR) interferometry technique is used to process a time series of TerraSAR-X images and estimate the land subsidence in the urban area of Singapore. Interferometric SAR (InSAR) measurements are merged to the Representative Concentration Pathway (RCP) 4.5 and RCP 8.5 sea-level rise scenarios to identify projected inundated areas and provide a map of flood vulnerability. Subsiding rates larger than 5 mm/year are found near the shore on the low flat land, associated to areas recently reclaimed or built. The projected flooded map of Singapore are provided for different sea-level rise scenarios. In this study, we show that local land subsidence can increase the flood vulnerability caused by sea level rise by 2100 projections. This can represent an increase of 25% in the flood area in the central area of Singapore for the RCP4.5 scenario.


2020 ◽  
Author(s):  
Lisa Van Well ◽  
Anette Björlin ◽  
Per Danielsson ◽  
Godefroid Godefroid Ndayikengurukiye ◽  
Gunnel Göransson

<p>Sea level rise poses profound challenges within current municipal and regional governance since it requires unusually long planning horizons, is surrounded by great uncertainties, and gives rise to novel ethical challenges. Adaptation to climate change is fundamentally an ethical issue because the aim of any proposed adaptation measure is to protect that which is valued in society. One of the most salient ethical issues discussed in the adaptation literature relates to the distribution of climate related risks, vulnerabilities and benefits across populations and over time. Raising sea-walls is typically associated with high costs and potentially negative ecological impacts as well as substantial equity concerns; managed retreat or realignment often causes problems related to property rights; and migration out of low-lying areas can involve the loss of sense and cultural identity and impact on receiving communities.</p><p>How can the soft and ethical dimensions of rising mean sea levels be characterized and how can their consequences be mapped? To help municipalities to understand the values and ethics attached to measures to deal with long-term rising sea levels in southern Sweden, we are developing a methodology of soft or ethical values to complement to GIS-mapping of coastal vulnerability based on coastal characteristics and socio-economic factors.</p><p>Rather than determining these values a priori, they are being discerned through workshops with relevant stakeholders and in interviews with citizens residing in and utilizing the coastal areas. The methodology attempts to determine the place-based of values within coastal communities with a focus on “whose” values, “what” values, and the long-term or short-term nature of values. It builds on an analytical framework developed to acquire information on the behavior, knowledge, perception and feelings of people living, working and enjoying the coastal areas.  In turn this stakeholder-based information is used to co-create “story maps” as tools to communicate complicated vulnerability analyses, highlight the ethical dimensions of various adaptation measures, raise awareness and aid decisionmakers in taking uncomfortable decisions to “wicked” planning problems around the negative effects of sea level rise, coastal erosion and urban flooding.</p><p>This paper presents the methodological development of the task as well as the results the study in four Swedish municipalities. The representation of the “soft” and ethical values provides an opportunity to help clarify these values to policymakers and increase resilience to rising sea levels.</p>


2020 ◽  
Author(s):  
Pau Luque Lozano ◽  
Lluís Gómez-Pujol ◽  
Marta Marcos ◽  
Alejandro Orfila

<p>Sea-level rise induces a permanent loss of land with widespread ecological and economic impacts, most evident in urban and densely populated areas. The eventual coastline retreat combined with the action of waves and storm surges will end in more severe damages over coastal areas. These effects are expected to be particularly significant over islands, where coastal zones represent a relatively larger area vulnerable to marine hazards.</p><p>Managing coastal flood risk at regional scales requires a prioritization of resources and socioeconomic activities along the coast. Stakeholders, such as regional authorities, coastal managers and private companies, need tools that help to address the evaluation of coastal risks and criteria to support decision-makers to clarify priorities and critical sites. For this reason, the regional Government of the Balearic Islands (Spain) in association with the Spanish Ministry of Agriculture, Fisheries and Environment has launched the Plan for Climate Change Coastal Adaptation. This framework integrates two levels of analysis. The first one relates with the identification of critical areas affected by coastal flooding and erosion under mean sea-level rise scenarios and the quantification of the extent of flooding, including marine extreme events. The second level assesses the impacts on infrastructures and assets from a socioeconomic perspective due to these hazards.</p><p>In this context, this paper quantifies the effects of sea-level rise and marine extreme events caused by storm surges and waves along the coasts of the Balearic Islands (Western Mediterranean Sea) in terms of coastal flooding and potential erosion. Given the regional scale (~1500 km) of this study, the presented methodology adopts a compromise between accuracy, physical representativity and computational costs. We map the projected flooded coastal areas under two mean sea-level rise climate change scenarios, RCP4.5 and RCP8.5. To do so, we apply a corrected bathtub algorithm. Additionally, we compute the impact of extreme storm surges and waves using two 35-year hindcasts consistently forced by mean sea level pressure and surface winds from ERA-Interim reanalysis. Waves have been further propagated towards the nearshore to compute wave setup with higher accuracy. The 100-year return levels of joint storm surges and waves are used to map the spatial extent of flooding in more than 200 sandy beaches around the Balearic Islands by mid and late 21st century, using the hydrodynamical LISFLOOD-FP model and a high resolution (2 m) Digital Elevation Model.</p>


Sign in / Sign up

Export Citation Format

Share Document