318 Comparison of a point-of-care glucometer and an automated biochemical analyzer to measure glucose concentrations in whole blood, serum, and plasma from porcine blood samples

2017 ◽  
Vol 95 (suppl_4) ◽  
pp. 157-158 ◽  
Author(s):  
M. K. Gohlke ◽  
W. Z. Nunnelley ◽  
T. D. Brandebourg
2011 ◽  
Vol 57 (5) ◽  
pp. 753-761 ◽  
Author(s):  
Ulrich Y Schaff ◽  
Greg J Sommer

BACKGROUND Centrifugal “lab on a disk” microfluidics is a promising avenue for developing portable, low-cost, automated immunoassays. However, the necessity of incorporating multiple wash steps results in complicated designs that increase the time and sample/reagent volumes needed to run assays and raises the probability of errors. We present proof of principle for a disk-based microfluidic immunoassay technique that processes blood samples without conventional wash steps. METHODS Microfluidic disks were fabricated from layers of patterned, double-sided tape and polymer sheets. Sample was mixed on-disk with assay capture beads and labeling antibodies. Following incubation, the assay beads were physically separated from the blood cells, plasma, and unbound label by centrifugation through a density medium. A signal-laden pellet formed at the periphery of the disk was analyzed to quantify concentration of the target analyte. RESULTS To demonstrate this technique, the inflammation biomarkers C-reactive protein and interleukin-6 were measured from spiked mouse plasma and human whole blood samples. On-disk processing (mixing, labeling, and separation) facilitated direct assays on 1-μL samples with a 15-min sample-to-answer time, <100 pmol/L limit of detection, and 10% CV. We also used a unique single-channel multiplexing technique based on the sedimentation rate of different size or density bead populations. CONCLUSIONS This portable microfluidic system is a promising method for rapid, inexpensive, and automated detection of multiple analytes directly from a drop of blood in a point-of-care setting.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1043-1043
Author(s):  
Pierre A. Toulon ◽  
Yves Ozier ◽  
Annick Ankri ◽  
Marie-Helene Fleron ◽  
Genevieve Leroux ◽  
...  

Abstract One of the critical issues in the monitoring of coagulation during surgery is the delay required to obtain results when tests are performed in a central laboratory. The CoaguChek ProDM (Roche Diagnostics) is a point-of-care (POC) coagulation analyzer designed to perform the measurement of clotting times such as the prothrombin time (PT) or the INR, and the activated partial thromboplastin time (APTT). So far, it has been mainly evaluated in the control of anticoagulation in patients on warfarin. A 45 μl-whole blood sample is disposed in the well of a specific 37°C-prewarmed single-use cartridge. It then circulates in a capillary tube coated with a specific agent. The test result is usually obtained in less than 5 min. The precision, evaluated as the “within-run” coefficient of variation (n=7), was found in the range from 3.2% to 7.3% depending of both the lyophilized whole blood control sample evaluated (normal or abnormal) and the clotting time performed. The aim of this multicenter study was to evaluate the performance of the CoaguChek ProDM in the monitoring of coagulation (PT and APTT) during hemorrhagic surgery. For that purpose, 78 patients undergoing surgical procedure (liver transplantation, liver resection, vascular and orthopedic/trauma surgery) were included in 3 centers after the study was approved by our Ethic Committee. Arterial blood samples were drawn at least 2 times: before the surgical incision and after a blood loss of 25% or more. Blood samples were simultaneously sent to the central laboratory and analyzed using the POC device. A total of 171 consecutive paired analyses were conducted. There was a very good agreement of the point-of-care-based monitoring of PT (sec) with the central laboratory monitoring (r=0.92, p<0.0001). However, the results were not identical, with significantly shorter clotting times (and lower ratios) obtained on the CoaguChek. It could be mentioned that, the difference was dramatically reduced when PT was expressed as the percentage, as it is usual in France. Comparison was less conclusive for APTT (r=0.82), with shorter clotting times (and lower ratios) again on the CoaguChek. Moreover, APTT measurement was found to be of limited interest in the studied population, particularly in the case of infusion of aprotinin which leaded to highly prolonged APTT (above the detection limits defined for the POC analyzer and for the central laboratory instrument, a STA analyzer). These results suggest that the CoaguChek ProDM allows an accurate measurement of PT in patients undergoing hemorrhagic surgical procedures. However, the results were not identical to that obtained from the central laboratory, suggesting that the transfusion algorithms would have to be adapted accordingly. One of the main advantages gained using POC testing is the ability to obtain results more rapidly. Actually, the turn-around time, defined as the elapsed time from blood sampling until availability of the results for the clinicians, was highly significantly shorter for the POC system than for the central laboratory (below 5 min vs. 60 min median value, range: 40->120 min). Finally, the clinical interest of such a point-of-care monitoring of coagulation deserves to be prospectively investigated, especially in connection with the amount of transfused fresh frozen plasma units.


Data in Brief ◽  
2018 ◽  
Vol 16 ◽  
pp. 81-89 ◽  
Author(s):  
Kazunori Murata ◽  
Laurel Glaser ◽  
Mary Nardiello ◽  
Lakshmi V. Ramanathan ◽  
Dean C. Carlow

2021 ◽  
Author(s):  
Xi Chen ◽  
Sarika Agarwal ◽  
Stewart Hoelscher ◽  
Richard Egan ◽  
Dipesh Jaiswal ◽  
...  

Infection from SARS-CoV-2 elicits an immune response to the nucleocapsid (N) and spike proteins (subunits S1 and S2). In this study, we set out to understand the utility of the multiplexed Quidel Sofia 2 SARS-CoV-2 IgG Antibody Fluorescent Immuno-Assay (FIA) that measures IgG antibodies against these three primary SARS-CoV-2 antigens from a single sample in 15 minutes. Using this assay with samples that were collected prior to the COVID-19 pandemic (n=816) and diseased state samples (n=99), the specificities for the three antigens were 98.4-99.9% and 98.0-100.0%, respectively. A longitudinal study was designed to collect weekly fingerstick, venous whole blood, serum and plasma samples from subjects vaccinated with the Moderna or Pfizer/BioNtech mRNA vaccines. The majority of these enrolled subjects had no known prior infection while a subset was known to have had prior COVID-19 infection. We found that the fingerstick whole blood samples performed as effectively as serum, plasma, and venous whole blood samples with a 95.8-99.5% agreement allowing physicians in a near-patient setting to rapidly provide results to their patients. Additionally, as this assay measures an IgG response against three viral proteins, S1, S2 and N, we were able to characterize immune response between i) naturally infected subjects, ii) vaccinated subjects with no prior infection, iii) vaccinated subjects with known prior infection, and iv) vaccinated subjects with prior asymptomatic exposure/infection. The Quidel Sofia 2 SARS-CoV-2 IgG FIA will aid in providing insights to the protective humoral responses as an increasing number of the world population is vaccinated against SARS-CoV-2.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4662-4662
Author(s):  
Debnath Maji ◽  
Michael A Suster ◽  
Divyaswathi Citla Sridhar ◽  
Maria Alejandra Pereda ◽  
Janet Martin ◽  
...  

Introduction: Patients with Hemophilia A have considerable phenotypic heterogeneity with respect to clinical severity based on their baseline factor levels. As clinical bleeding risk is helpful to individualize factor replacement therapy in hemophilia patients, previous studies have utilized direct and indirect methods of thrombin generation to classify individual bleeding phenotypes, however, with variable results. An easy to use, point-of-care, global assay to assess bleed phenotype, can be a useful tool in the clinical setting to determine intensity of prophylaxis therapy for patients with hemophilia. We have previously introduced a novel, point-of-care (POC), dielectric microsensor, ClotChip, and demonstrated its sensitivity to factor replacement in patients with severe hemophilia A. We aim to further test the ability of ClotChip in assessment of a bleeding phenotype, as described by a bleeding score, in patients with hemophilia A. Methods: After IRB approval, 28 patients with hemophilia A of varying severity and well-characterized bleeding history, were enrolled in this study at the time of trough factor levels. The bleeding history was extracted from patient charts and included number of bleeds (joint and soft-tissue), annual factor usage in terms of units/kg, and number of target joints. These parameters were used to generate a bleeding score (range: 0 - 24), and patients were divided in to 2 categories with scores between 0 - 12 (n=14) and > 12 (n=14). Healthy volunteers (n=17) were accrued as controls. Whole blood samples were obtained by venipuncture into collection tubes containing 3.2% sodium citrate. Samples were then tested with the ClotChip within 2 hours of collection. ClotChip is based on the electrical technique of dielectric spectroscopy (DS) and features a low-cost (material cost < $1), small- sized (26mm × 9mm × 3mm), and disposable microfluidic biochip with miniscule sample volume (< 10 µL). The ClotChip readout was taken as the temporal variation in the real part of blood dielectric permittivity at 1 MHz. Our previous studies have shown that the ClotChip readout is sensitive to the global coagulation process and the time to reach a peak in permittivity (Tpeak) is a sensitive parameter to assess coagulation factor defects. Thrombin generation assay (TGA) using low tissue factor concentration was also performed on blood samples according to the manufacturer's direction. TGA was not available for 4 hemophilia and 2 control samples. Endogenous thrombin potential (ETP) parameter of TGA was used in this study to assess thrombin generation. Data are reported as mean ± standard deviation (SD). Analysis of variance (ANOVA) was used to test for statistical significance between groups with P < 0.05. Spearman's correlation test was used to derive correlation statistics. Results: ClotChip exhibited a mean Tpeak of 2186s ± 1560s for hemophilia patients in the group with higher bleeding scores (i.e. score >12), a mean Tpeak of 931s ± 496s for the group with lower bleeding scores (i.e. score <12) and a mean Tpeak of 441s ± 74s for the healthy group (Figure 1A). A significant difference in Tpeak was found between the group with higher bleeding scores compared to the group with lower bleeding scores (P = 0.002) as well as between higher bleeding scores and the healthy group (P < 0.0001). However, no significant difference in the TGA ETP parameter was detected between the groups with higher bleeding scores (mean ETP: 470 ± 814) and lower bleeding scores (mean ETP: 471 ± 897) (Figure 1B). ETP exhibited a statistical difference between the healthy group (mean ETP: 3462 ± 575) and both hemophilia groups (P < 0.0001). We also carried out studies to investigate the correlative power of the ClotChip Tpeak parameter to the TGA ETP parameter when including additional blood samples that were collected at various times during a hemophilia patient's prophylaxis regimen. The ClotChip Tpeak parameter exhibited strong negative correlation to the TGA ETP parameter (Spearman's rs= -0.73, P < 0.0001). Conclusions: Our studies suggest that a novel dielectric microsensor (ClotChip) could be useful in assessing bleeding phenotype in hemophilia A patients, allowing rapid assessment of hemostasis using a miniscule amount of whole blood (<10 µL) at the POC. Further studies are needed to determine if ClotChip data can be used to individualize prophylactic factor replacement regimens in hemophilia A patients. Disclosures Maji: XaTek, Inc: Patents & Royalties: 9,995,701. Suster:XaTek, Inc: Consultancy, Patents & Royalties: 9,995,701. Mohseni:XaTek, Inc: Consultancy, Patents & Royalties. Ahuja:XaTexk Inc.: Consultancy, Patents & Royalties, Research Funding; Rainbow Children's Foundation: Research Funding; Bayer: Consultancy; Biovertiv Sanofi: Consultancy; Genentech: Consultancy.


2019 ◽  
Vol 14 (5) ◽  
pp. 890-895 ◽  
Author(s):  
William D. Arnold ◽  
Kenneth Kupfer ◽  
Monica Hvidsten Swensen ◽  
Kyle S. Fortner ◽  
Harold E. Bays ◽  
...  

Background: Point-of-care (POC) HbA1c tests hold the promise of reducing the rates of undiagnosed diabetes, provided they exhibit acceptable analytical performance. The precision and total error of the POC (Afinion™ HbA1c Dx) test were investigated using whole blood samples obtained by fingerstick and venipuncture. Methods: Fingerstick samples spanning the assay range were collected from 61 subjects at three representative POC sites. At each site, six fingerstick samples were obtained from each subject and tested on the POC test across two (Afinion AS100) instruments. Repeatability, between-operator, and between-instrument components of variance were calculated using analysis of variance (ANOVA). Four venous samples (low, threshold, medium, and high HbA1c) were measured in duplicate across three instruments using three reagent lots, twice per day over 20-days. Repeatability, between-run, between-day, between-lot, and between-instrument components of variance were calculated. These fingerstick and venous blood results, combined with estimates of imprecision and bias from a prior investigation, allowed for the calculation of the total coefficient of variation (CV) and total error of the POC test using fingerstick and venous whole blood samples. Results: The total imprecision ranged from 1.30% to 2.03% CV using fingerstick samples and from 1.31% to 1.64% CV using venous samples. The total error ranged from 2.87% to 4.75% using fingerstick samples and from 2.93% to 3.80% using venous samples. Conclusions: The POC test evaluated here is precise across its measuring range using both fingerstick and venous whole blood. The calculated total error of the test is well under the accepted quality requirement of ≤6%.


Pathology ◽  
2016 ◽  
Vol 48 (5) ◽  
pp. 498-500 ◽  
Author(s):  
Raellene Dare-Smith ◽  
Tony Badrick ◽  
Philip Cunningham ◽  
Alison Kesson ◽  
Susan Badman

Sign in / Sign up

Export Citation Format

Share Document