509 Environmental impact based on life cycle assessment of starting pig production receiving diets with reduced crude protein content

2017 ◽  
Vol 95 (suppl_4) ◽  
pp. 248-248
Author(s):  
A. N. T. R. Monteiro ◽  
M. R. Fachinello ◽  
L. M. Diaz-Huepa ◽  
A. V. S. Partyka ◽  
R. V. Nunes ◽  
...  
2021 ◽  
Vol 13 (9) ◽  
pp. 4815
Author(s):  
Lucas A. C. Esteves ◽  
Alessandra N. T. R. Monteiro ◽  
Natália Y. Sitanaka ◽  
Paula C. Oliveira ◽  
Leandro D. Castilha ◽  
...  

Two experiments were performed to determine the digestibility of diets with crude protein (CP) reduction supplemented with amino acids (18.15; 17.15; 16.15 and 15.15%) to growing pigs (30–50 kg), to assess the use of nutrients and account for the manure excretion, and to evaluate the performance, backfat thickness, Longissimus lumborum depth, and plasma urea, aiming to evaluate the environmental impact through life cycle assessment (LCA); for the first time in Brazil interacting experiments were developed to evaluate the CP reduction and LCA. The CP reduction resulted in greater daily weight gain (p = 0.011), final weight (p = 0.020), better use of N and P, through the greater N and P retained (p = 0.003 and p = 0.017, respectively). There was a linear reduction in acidification potential (p = 0.015), eutrophication potential (p = 0.001), and land occupation (p = 0.005) when dietary CP decreased from 18.15 to 15.15%. The reduction in CP and supplementation of amino acids in diets for growing pigs (30–50 kg) improved final and daily weight gain. Through LCA, and performance and metabolism data, it was concluded that for the acidification, eutrophication and land occupation categories, impacts were reduced as the protein concentration was reduced.


2017 ◽  
Vol 47 (6) ◽  
Author(s):  
Alessandra Nardina Trícia Rigo Monteiro ◽  
Jean-Yves Dourmad ◽  
Paulo Cesar Pozza

ABSTRACT: Environmental impacts of livestock systems, especially pig production, have come under increasing debate in recent years. The challenge is in meeting the growing demand for food at an affordable cost, without compromising environmental integrity. Previous studies have shown that feed production is responsible for the majority of CO2-eq. emission resulting from pig farming systems. This seems to indicate that feed strategies could be an effective tool to achieve the sustainability of the pork chain. Therefore, dietary crude protein reduction, through the addition of industrial amino acids, lessens the nitrogen excretion by pigs and, consequently, could mitigate the effects on the environment of pig production. In this sense, to effectively evaluate the environmental impacts of pig production systems, life cycle assessment has been widely used in agriculture, but the effects of feed are still understudied in Brazilian conditions. Owing to the importance and the great concern in this research area, we presented in this paper an updated review focusing on the nutritional techniques and their potential to reduce the global warming potential of pig production, considering both the direct effects, related to the choice of feed ingredients and the indirect effects, related to changes in the efficiency of use of nutrient by the animals.


2013 ◽  
Vol 93 (3) ◽  
pp. 445-454 ◽  
Author(s):  
Jenalee M. Mischkolz ◽  
Michael P. Schellenberg ◽  
Eric G. Lamb

Mischkolz, J. M., Schellenberg, M. P. and Lamb, E. G. 2013. Early productivity and crude protein content of establishing forage swards composed of combinations of native grass and legume species in mixed-grassland ecoregions. Can. J. Plant Sci. 93: 445–454. We evaluated the early establishment productivity of forage swards of native, perennial, cool and warm season grasses, and legumes as they have the potential to provide non-invasive, productive, and drought resistant rangelands. Seven species with agronomic potential and a broad native geographic distribution were selected for testing including: nodding brome [Bromus anomalus (Coult.)], blue bunch wheatgrass [Pseudoregneria spicata (Pursh)], western wheatgrass [Pascopyrum smithii (Rydb.)], side oats grama [Bouteloua curtipendula (Michx.)], little blue stem [Schizachyrium scoparium (Michx.)], purple prairie clover [Dalea purpurea (Vent.)], and white prairie clover [Dalea candida (Willd.)]. Forage swards, including all seven monocultures, 21 two-species mixtures and a mixture with all species, were planted in two sites, Saskatoon and Swift Current, Saskatchewan. Western wheatgrass (WWG) had the highest overall plant density and the strongest effect on the forage yield of the forage swards; however, productivity and crude protein content were not reduced when other species were also included in the forage sward. Dalea spp. did not establish as well as the other species, but had the highest crude protein concentrations. This work provides insight into forage sward development at the establishment stage; additional work is required to determine long-term species impacts for well established forage swards.


Author(s):  
Cheila Almeida ◽  
Philippe Loubet ◽  
Tamíris Pacheco da Costa ◽  
Paula Quinteiro ◽  
Jara Laso ◽  
...  

2021 ◽  
Vol 13 (9) ◽  
pp. 5322
Author(s):  
Gabriel Zsembinszki ◽  
Noelia Llantoy ◽  
Valeria Palomba ◽  
Andrea Frazzica ◽  
Mattia Dallapiccola ◽  
...  

The buildings sector is one of the least sustainable activities in the world, accounting for around 40% of the total global energy demand. With the aim to reduce the environmental impact of this sector, the use of renewable energy sources coupled with energy storage systems in buildings has been investigated in recent years. Innovative solutions for cooling, heating, and domestic hot water in buildings can contribute to the buildings’ decarbonization by achieving a reduction of building electrical consumption needed to keep comfortable conditions. However, the environmental impact of a new system is not only related to its electrical consumption from the grid, but also to the environmental load produced in the manufacturing and disposal stages of system components. This study investigates the environmental impact of an innovative system proposed for residential buildings in Mediterranean climate through a life cycle assessment. The results show that, due to the complexity of the system, the manufacturing and disposal stages have a high environmental impact, which is not compensated by the reduction of the impact during the operational stage. A parametric study was also performed to investigate the effect of the design of the storage system on the overall system impact.


Author(s):  
Yuma Sasaki ◽  
Takahiro Orikasa ◽  
Nobutaka Nakamura ◽  
Kiyotada Hayashi ◽  
Yoshihito Yasaka ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4146
Author(s):  
Agnieszka Jachura ◽  
Robert Sekret

This paper presents an environmental impact assessment of the entire cycle of existence of the tube-vacuum solar collector prototype. The innovativeness of the solution involved using a phase change material as a heat-storing material, which was placed inside the collector’s tubes-vacuum. The PCM used in this study was paraffin. The system boundaries contained three phases: production, operation (use phase), and disposal. An ecological life cycle assessment was carried out using the SimaPro software. To compare the environmental impact of heat storage, the amount of heat generated for 15 years, starting from the beginning of a solar installation for preparing domestic hot water for a single-family residential building, was considered the functional unit. Assuming comparable production methods for individual elements of the ETC and waste management scenarios, the reduction in harmful effects on the environment by introducing a PCM that stores heat inside the ETC ranges from 17 to 24%. The performed analyses have also shown that the method itself of manufacturing the materials used for the construction of the solar collector and the choice of the scenario of the disposal of waste during decommissioning the solar collector all play an important role in its environmental assessment. With an increase in the application of the advanced technologies of materials manufacturing and an increase in the amount of waste subjected to recycling, the degree of the solar collector’s environmental impact decreased by 82% compared to its standard manufacture and disposal.


Sign in / Sign up

Export Citation Format

Share Document