0220 Effects of early antibiotic exposure on host metabolism

2016 ◽  
Vol 94 (suppl_5) ◽  
pp. 104-104
Author(s):  
L. M. Cox
mSystems ◽  
2019 ◽  
Vol 4 (4) ◽  
Author(s):  
Hongchang Gao ◽  
Qi Shu ◽  
Jiuxia Chen ◽  
Kai Fan ◽  
Pengtao Xu ◽  
...  

ABSTRACT The gut microbiota has the capability to regulate homeostasis of the host metabolism. Since antibiotic exposure can adversely affect the microbiome, we hypothesized that antibiotic effects on the gut microbiota and host metabolism are sex dependent. In this study, we examined the effects of antibiotic treatments, including vancomycin (Vanc) and ciprofloxacin-metronidazole (CiMe), on the gut microbiome and metabolome in colonic contents and tissues in both male and female mice. We found that the relative abundances and structural composition of Firmicutes were significantly reduced in female mice after both Vanc and CiMe treatments but in male mice only after treatment with Vanc. However, Vanc exposure considerably altered the relative abundances and structural composition of representatives of the Proteobacteria especially in male mice. The levels of short-chain fatty acids (SCFAs; acetate, butyrate, and propionate) in colonic contents and tissues were significantly decreased in female mice after both antibiotic treatments, while these reductions were detected in male mice only after Vanc treatment. However, another SCFA, formate, exhibited the opposite tendency in colonic tissues. Both antibiotic exposures significantly decreased the levels of alanine, branched-chain amino acids (BCAAs; leucine, isoleucine, and valine) and aromatic amino acids (AAAs; phenylalanine and tyrosine) in colonic contents of female mice but not in male mice. Additionally, female mice had much greater correlations between microbe and metabolite than male mice. These findings suggest that sex-dependent effects should be considered for antibiotic-induced modifications of the gut microbiota and host metabolism. IMPORTANCE Accumulating evidence shows that the gut microbiota regulates host metabolism by producing a series of metabolites, such as amino acids, bile acids, fatty acids, and others. These metabolites have a positive or negative effect on host health. Antibiotic exposure can disrupt the gut microbiota and thereby affect host metabolism and physiology. However, there are a limited number of studies addressing whether antibiotic effects on the gut microbiota and host metabolism are sex dependent. In this study, we uncovered a sex-dependent difference in antibiotic effects on the gut microbiota and metabolome in colonic contents and tissues in mice. These findings reveal that sex-dependent effects need to be considered for antibiotic use in scientific research or clinical practice. Moreover, this study will also give an important direction for future use of antibiotics to modify the gut microbiome and host metabolism in a sex-specific manner.


Author(s):  
Bingbing Li ◽  
Huihui Qiu ◽  
Ningning Zheng ◽  
Gaosong Wu ◽  
Yu Gu ◽  
...  

The balance of gut microbiome is essential for maintaining host metabolism homeostasis. Despite widespread antibiotic use, the potential long-term detrimental consequences of antibiotics for host health are getting more and more attention. However, it remains unclear whether diet affects the post-antibiotic recovery of gut microbiome and host metabolism. In this study, through metagenomic sequencing and hepatic transcriptome analysis, we investigated the divergent impacts of short-term vancomycin (Vac), or combination of ciprofloxacin and metronidazole (CM) treatment on gut microbiome and host metabolism, as well as their recovery extent from antibiotic exposure on chow diet (CD) and high-fat diet (HFD). Our results showed that short-term Vac intervention affected insulin signaling, while CM induced more functional changes in the microbiome. However, Vac-induced long-term (45 days) changes of species were more apparent when recovered on CD than HFD. The effects of antibiotic intervention on host metabolism were long-lasting, antibiotic-specific, and diet-dependent. The number of differentially expressed gene was doubled by Vac than CM, but was comparable after recovery on CD as revealed by the hepatic transcriptomic analysis. In contrast, HFD intake during recovery could worsen the extent of post-antibiotic recovery by altering infection, immunity, and cancer-related pathways in short-term Vac-exposed rats and by shifting endocrine system-associated pathways in CM-exposed rats. Together, the presented data demonstrated the long-term recovery extent after different antibiotic exposure was diet-related, highlighting the importance of dietary management during post-antibiotic recovery.


2021 ◽  
Vol 222 ◽  
pp. 112530
Author(s):  
Hui Gao ◽  
Xueyan Wan ◽  
Boya Xiao ◽  
Kaichao Yang ◽  
Yafei Wang ◽  
...  

Metabolites ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 404
Author(s):  
Gabriela de Matuoka e Chiocchetti ◽  
Leisa Lopes-Aguiar ◽  
Natália Angelo da Silva Miyaguti ◽  
Lais Rosa Viana ◽  
Carla de Moraes Salgado ◽  
...  

Cancer cachexia is a severe wasting condition that needs further study to find ways to minimise the effects of damage and poor prognosis. Skeletal muscle is the most impacted tissue in cancer cachexia; thus, elucidation of its metabolic alterations could provide a direct clue for biomarker research and be applied to detect this syndrome earlier. In addition, concerning the significant changes in the host metabolism across life, this study aimed to compare the metabolic muscle changes in cachectic tumour-bearing hosts at different ages. We performed 1H-NMR metabolomics in the gastrocnemius muscle in weanling and young adult Walker-256 tumour-bearing rats at different stages of tumour evolution (initial, intermediate, and advanced). Among the 49 metabolites identified, 24 were significantly affected throughout tumour evolution and 21 were significantly affected regarding animal age. The altered metabolites were mainly related to increased amino acid levels and changed energetic metabolism in the skeletal muscle, suggesting an expressive catabolic process and diverted energy production, especially in advanced tumour stages in both groups. Moreover, these changes were more severe in weanling hosts throughout tumour evolution, suggesting the distinct impact of cancer cachexia regarding the host’s age, highlighting the need to adopting the right animal age when studying cancer cachexia.


Sign in / Sign up

Export Citation Format

Share Document