scholarly journals OPTIMUM HIGH IMPEDANCE SURFACE CONFIGURATION FOR MUTUAL COUPLING REDUCTION IN SMALL ANTENNA ARRAYS

2011 ◽  
Vol 32 ◽  
pp. 283-297 ◽  
Author(s):  
Nicolas Capet ◽  
Cedric Martel ◽  
Jérôme Sokoloff ◽  
Olivier Pascal
Author(s):  
José Bruno O. de Araújo ◽  
Vanessa P. R. Magri Souza ◽  
Tadeu N. Ferreira ◽  
Leni J. de Matos ◽  
Glaucio L. Siqueira ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Tian Lan ◽  
Qiu-Cui Li ◽  
Yu-Shen Dou ◽  
Xun-Ya Jiang

This paper presents a two-dimensional infinite dipole array system with a mushroom-like high-impedance surface (HIS) ground plane with wide-angle scanning capability in the E-plane. The unit cell of the proposed antenna array consists of a dipole antenna and a four-by-four HIS ground. The simulation results show that the proposed antenna array can achieve a wide scanning angle of up to 65° in the E-plane with an excellent impedance match and a small S11. Floquet mode analysis is utilized to analyze the active impedance and the reflection coefficient. Good agreement is obtained between the theoretical results and the simulations. Using numerical and theoretical analyses, we reveal the mechanism of such excellent wide scanning properties. For the range of small scanning angles, these excellent properties result mainly from the special reflection phase of the HIS ground, which can cause the mutual coupling between the elements of the real array to be compensated by the mutual coupling effect between the real array and the mirror array. For the range of large scanning angles, since the surface wave (SW) mode could be resonantly excited by a high-order Floquet mode TM−1,0 from the array and since the SW mode could be converted into a leaky wave (LW) mode by the scattering of the array, the radiation field from the LW mode is nearly in phase with the direct radiating field from the array. Therefore, with help from the special reflection phase of the HIS and the designed LW mode of the HIS ground, the antenna array with an HIS ground can achieve a wide-angle scanning performance.


Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 3809
Author(s):  
Mohammed M. Bait-Suwailam ◽  
Isidoro I. Labiano ◽  
Akram Alomainy

In this paper, impedance matching enhancement of a grounded wearable low-profile loop antenna is investigated using a high-impedance surface (HIS) structure. The wearable loop antenna along with the HIS structure is maintained low-profile, making it a suitable candidate for healthcare applications. The paper starts with investigating, both numerically and experimentally, the effects of several textile parameters on the performance of the wearable loop antenna. The application of impedance enhancement of wearable grounded loop antenna with HIS structure is then demonstrated. Numerical full-wave simulations are presented and validated with measured results. Unlike the grounded wearable loop antenna alone with its degraded performance, the wearable loop antenna with HIS structure showed better matching performance improvement at the 2.45 GHz-band. The computed overall far-field properties of the wearable loop antenna with HIS structure shows good performance, with a maximum gain of 6.19 dBi. The effects of bending the wearable loop antenna structure with and without HIS structure as well as when in close proximity to a modeled human arm are also investigated, where good performance was achieved for the case of the wearable antenna with the HIS structure.


Author(s):  
Mahmoud M. Mostafa ◽  
Mohamed I. Ibrahim ◽  
Amr M.E. Safwat ◽  
Tamer M. Abuelfadl

Sign in / Sign up

Export Citation Format

Share Document