scholarly journals Concept of Large-scale Thermomechanical URL Experiments in the Nizhnekanskiy Rock Massif

2020 ◽  
Vol 12 (3) ◽  
pp. 101-111
Author(s):  
E. V. Moiseenko ◽  
◽  
N. I. Drobyishevsky ◽  
R. A. Butov ◽  
Yu. N. Tokarev ◽  
...  

Numerical simulation of thermomechanical processes in a deep underground radioactive waste repository requires information on the host rock and the engineered barriers properties at a scale of dozens of centimeters, meters and more. However, the extrapolation of the values obtained on small-scale samples in surface laboratories yields excessive uncertainties. The materials behavior is also influenced by conditions that cannot be reliably reproduced in a surface laboratory, such as water content or initial stress-strain state. Following experiments are planned to study the host rock and the engineered barriers behavior during heating under conditions similar to those expected in the repository, as well as to assess their large-scale thermomechanical properties. In the experiment focused on the excavation damaged zone thermal mechanics, the behavior of reinforced drift walls and vaults under heating will be studied. The experimental facility will involve two drifts with the same orientation as the planned repository ones. As a result, the spatial distribution of excavation damaged zone thermomechanical parameters and their evolution due to heating will be identified. The second experiment focuses on the host rock mass behavior under spatially nonuniform unsteady heating. The facility will feature two vertical boreholes with heaters. The experiment will be divided into several stages: study of the host rock initial state, estimation of the rock main thermomechanical properties, study of the temporal evolution of the stress field due to 3D temperature gradients and of the processes in the host rock occurring during its cooling and re-saturation with water. Following the completion of the separate-effect test program, an integrated experiment should be carried out to study the coupled processes with respect to their mutual influence. The obtained results will be used to refine the values of input parameters for numerical simulations and their uncertainty ranges, as well as to validate the computer codes.

2021 ◽  
Vol 1 ◽  
pp. 133-135
Author(s):  
Klaus Wieczorek ◽  
Katja Emmerich ◽  
Rainer Schuhmann ◽  
Jürgen Hesser ◽  
Markus Furche ◽  
...  

Abstract. Shaft-sealing systems for nuclear waste repositories are constructed to limit fluid inflow from the adjacent rock during the early stage after closure of the repository and to delay the release of possibly contaminated fluids from the repository at later stages. Current German concepts of shaft seals contain the hydraulic sandwich sealing system as a component of the lower seal in host rock (Kudla and Herold, 2021). The KIT-developed sandwich sealing system consists of alternating sealing segments (DS) of bentonite and equipotential segments (ES) that are characterized by a high hydraulic conductivity. Within the ES, fluid is evenly distributed over the cross section of the seal. Water bypassing the seal via the excavation-damaged zone or penetrating the seal inhomogeneously is contained, and a more homogeneous hydration and swelling of the DS is obtained. The functionality of such a system was proven in laboratory and semi-technical-scale experiments (Schuhmann et al., 2009). After a joint international pre-project (Emmerich et al., 2019) dedicated to the planning of a large-scale in situ test that demonstrates the feasibility and effectiveness of the sandwich shaft-sealing system in interaction with the host rock, the large-scale experiment was launched at the Mont Terri rock laboratory in July 2019 with partners from Germany, Switzerland, Spain, UK, and Canada. It consists of two experimental shafts of 1.18 m diameter and 10–12.6 m depth, constructed using a core drilling technique with a custom-made drill rig in a new niche in the sandy facies of the Opalinus Clay. The seal in shaft 1 consists of four DS (calcigel) of 1 m thickness and five ES (fine-grained quartz sand), each 30 cm thick (Fig. 1). Shaft sinking began in August 2020 and was completed in November 2020. In the following months, the sealing system and instrumentation of shaft 1 were installed. The sealing system is saturated from a pressure chamber located at the shaft bottom via an inclined lateral feeding borehole. Hydration of the system started in May 2021. Shaft 2 will host a slightly modified system emplaced 1–1.5 years later, in order to integrate experience obtained during the early operation phase of shaft 1. In contrast to shaft 1, the excavation-damaged zone around shaft 2 will have had time to develop. The seals and the surrounding rock are intensely monitored. Measurements in the rock (geophysics, pore pressure, and total stress) were started between August 2019 and March 2020. Characterization of the excavation-damaged zone along the wall of shaft 1 was performed by geophysical and surface packer measurements prior to seal emplacement. Measurements inside the shaft comprise water content, relative humidity, and temperature, pore pressure, stress, and displacements. The in situ work is backed by laboratory testing and model simulation. Data and experience obtained to date will be presented. The sandwich experiment is funded by the German Federal Ministry for Economic Affairs and Energy under contract 02E11799.


2020 ◽  
Vol 205 ◽  
pp. 10003
Author(s):  
Benoît Pardoen ◽  
Frédéric Collin ◽  
Pierre Bésuelle ◽  
Robert Charlier ◽  
Jean Talandier ◽  
...  

In the context of underground exploitation, the behaviour of rocks near galleries and tunnels conditions their stability. Underground drilling generates deformations, damage, fracturing, and significant modification of flow characteristics in the surrounding rock. However, the influence of small-scale characteristics and behaviour on the rock deformations and damage at engineering scale remains a complex issue. Consequently, the multiscale behaviour of a clay rock is modelled starting from the large scale of the excavation damaged zone around galleries and then enriching the approach by considering microstructural characteristics from the scale of mineral inclusions. Lastly, a double-scale numerical framework is considered. It allows to relate small- to large-scale rock behaviour in terms of deformations and material rupture. In fact, the development of damage and cracking at microscale allows to predict large-scale fracturing. The developed method focuses on a claystone in the particular context of long-term management of high-level nuclear wastes by deep geological repository. The results highlight the possibilities of double-scale computing in the prediction of the behaviour of underground engineering structures.


2021 ◽  
Author(s):  
Matias Alonso ◽  
Jean Vaunat ◽  
Minh-Ngoc Vu ◽  
Antonio Gens

<p>Argillaceous rocks have great potential as possible geological host medium to store radioactive waste.  Andra is leading the design of a deep geological nuclear waste repository to be located in the Callovo-Oxfordian formation. In the framework of this project, excavations of large diameter galleries are contemplated to access and to store intermediate-level long-lived nuclear waste at repository main level. The closure of the repository will be realized by building sealing structures of expansive material.</p><p>The response of such structures is affected by several thermo-hydro-mechanical coupled processes taking place in the near and far field of the argillaceous formations. They include the formation of an excavation induced damaged zone around the galleries, the impact of the thermal load on host rock pressures and deformations, the long-term interaction with support concrete structural elements and the hydration and swelling of sealing materials. As a result, the study of their performance requires to perform simulation works of increasing complexity in terms of coupling equations, problem geometry and material behaviour. As well, challenging computational aspects, as the ones related to fractures creation and propagation, have to be considered for a representative analysis of the problem.</p><p>This work presents advanced large scale THM numerical models to provide keys about the response of the host rock around large diameter galleries during excavation and further thermal load as well as to analyse the performance of large diameter sealing structures. Particular features of the models include on one hand advanced constitutive laws to capture the development of the fractured zone around excavations, the behaviour of host rock/gallery support interfaces and the multi-scale response of bentonitic backfill. On the other hand, simulations consider geometries including constructive details of interest at decimetre scale within large discretization domain covering the whole formation stratigraphic column.</p><p>These challenging simulations provided qualitative and quantitative results on key aspects for natural and engineered barrier integrity, like extension of the damaged zone, impact of the thermal load and water pressure variations in the surrounding geological layers, duration of natural hydration phase, swelling pressure development and seals global stability.</p>


2002 ◽  
Vol 456 ◽  
pp. 219-237 ◽  
Author(s):  
FAUSTO CATTANEO ◽  
DAVID W. HUGHES ◽  
JEAN-CLAUDE THELEN

By considering an idealized model of helically forced flow in an extended domain that allows scale separation, we have investigated the interaction between dynamo action on different spatial scales. The evolution of the magnetic field is studied numerically, from an initial state of weak magnetization, through the kinematic and into the dynamic regime. We show how the choice of initial conditions is a crucial factor in determining the structure of the magnetic field at subsequent times. For a simulation with initial conditions chosen to favour the growth of the small-scale field, the evolution of the large-scale magnetic field can be described in terms of the α-effect of mean field magnetohydrodynamics. We have investigated this feature further by a series of related numerical simulations in smaller domains. Of particular significance is that the results are consistent with the existence of a nonlinearly driven α-effect that becomes saturated at very small amplitudes of the mean magnetic field.


2016 ◽  
Vol 97 (2) ◽  
pp. 237-243 ◽  
Author(s):  
Dale R. Durran ◽  
Jonathan A. Weyn

Abstract One important limitation on the accuracy of weather forecasts is imposed by unavoidable errors in the specification of the atmosphere’s initial state. Much theoretical concern has been focused on the limits to predictability imposed by small-scale errors, potentially even those on the scale of a butterfly. Very modest errors at much larger scales may nevertheless pose a more important practical limitation. We demonstrate the importance of large-scale uncertainty by analyzing ensembles of idealized squall-line simulations. Our results imply that minimizing initial errors on scales around 100 km is more likely to extend the accuracy of forecasts at lead times longer than 3–4 h than efforts to minimize initial errors on much smaller scales. These simulations also demonstrate that squall lines, triggered in a horizontally homogeneous environment with no initial background circulations, can generate a background mesoscale kinetic energy spectrum roughly similar to that observed in the atmosphere.


2012 ◽  
Vol 76 (8) ◽  
pp. 3303-3318 ◽  
Author(s):  
J. F. Harrington ◽  
R. de la Vaissière ◽  
D. J. Noy ◽  
R. J. Cuss ◽  
J. Talandier

AbstractTo understand the fate and impact of gas produced within a repository for radioactive waste, a series of laboratory and field scale experiments have been performed on the Callovo-Oxfordian claystone (COx), the proposed host rock for the French repository. Results show the movement of gas is through a localized network of pathways, whose properties vary temporarily and spatially within the claystone. Significant evidence exists from detailed laboratory studies for the movement of gas along highly unstable pathways, whose aperture and geometry vary as a function of local stress, gas and porewater pressures. The coupling of these parameters results in the development of significant time-dependent effects, impacting on all aspects of COx behaviour, from gas breakthrough time, to the control of deformation processes. Variations in gas entry, breakthrough and steady-state pressures are indicative of microstructural heterogeneity which exerts an important control on the movement of gas. The localization of gas flow is also evident in preliminary results from the large scale gas injection test (PGZ) where gas flow is initially focussed within the excavation damaged zone (EDZ), which acts as a preferential pathway for gas. Numerical models based on conventional two-phase flow theory are unable to adequately describe the detailed observations from laboratory tests.


2018 ◽  
Vol 4 (3) ◽  
pp. 497
Author(s):  
A. Shadmand ◽  
Mahmoud Ghazavi ◽  
Navid Ganjian

The scale effect on bearing capacity of shallow footings supported by unreinforced granular soils has been evaluated extensively. However, the subject has not been addressed for shallow footings on geocell-reinforced granular soils. In this study, load-settlement characteristic of large square footings is investigated by performing large-scale loading tests on unreinforced and geocell-reinforced granular soils. The effects of footing width (B), soil relative density of soil (Dr), and reinforcement depth (u) have been investigated. The test results show that the scale effects exist in geocell-reinforced soils, like unreinforced soils, and the behavior of small-scale models of footings cannot be directly related to the behavior of full-scale footings due to the difference between initial conditions of tests and the initial state of mean stresses in the soil beneath the footings having different dimensions. Large footings create higher mean stresses in the soil, resulting in low soil friction angle and initial conditions of the test approach to the critical state lines. The results of tests indicate that model experiments should be conducted on low-density soil for better prediction of the behavior of full-scale footings, otherwise, the predicted behavior of full-scale footings does not seem conservative.


2000 ◽  
Vol 45 (4) ◽  
pp. 396-398
Author(s):  
Roger Smith
Keyword(s):  

2020 ◽  
Vol 1 (1) ◽  
pp. 1-10
Author(s):  
Evi Rahmawati ◽  
Irnin Agustina Dwi Astuti ◽  
N Nurhayati

IPA Integrated is a place for students to study themselves and the surrounding environment applied in daily life. Integrated IPA Learning provides a direct experience to students through the use and development of scientific skills and attitudes. The importance of integrated IPA requires to pack learning well, integrated IPA integration with the preparation of modules combined with learning strategy can maximize the learning process in school. In SMP 209 Jakarta, the value of the integrated IPA is obtained from 34 students there are 10 students completed and 24 students are not complete because they get the value below the KKM of 68. This research is a development study with the development model of ADDIE (Analysis, Design, Development, Implementation, and Evaluation). The use of KPS-based integrated IPA modules (Science Process sSkills) on the theme of rainbow phenomenon obtained by media expert validation results with an average score of 84.38%, average material expert 82.18%, average linguist 75.37%. So the average of all aspects obtained by 80.55% is worth using and tested to students. The results of the teacher response obtained 88.69% value with excellent criteria. Student responses on a small scale acquired an average score of 85.19% with highly agreed criteria and on the large-scale student response gained a yield of 86.44% with very agreed criteria. So the module can be concluded receiving a good response by the teacher and students.


2019 ◽  
Vol 61 (1) ◽  
pp. 5-13 ◽  
Author(s):  
Loretta Lees

Abstract Gentrification is no-longer, if it ever was, a small scale process of urban transformation. Gentrification globally is more often practised as large scale urban redevelopment. It is state-led or state-induced. The results are clear – the displacement and disenfranchisement of low income groups in favour of wealthier in-movers. So, why has gentrification come to dominate policy making worldwide and what can be done about it?


Sign in / Sign up

Export Citation Format

Share Document