scholarly journals A Proposed Method of Notch Toughness Evaluation for Hull Structural Steel Plate subjected to Line Heating Process

1970 ◽  
Vol 1970 (128) ◽  
pp. a369-a375
Author(s):  
Fusao Koshiga ◽  
Masaaki Ando
2011 ◽  
Vol 421 ◽  
pp. 250-253
Author(s):  
Hu Zhu ◽  
Xiao Guang Yang

To lay the foundation of the automation for line heating forming, a method for heating path generation and simulation for ship plate steel base on STL mode was proposed in this paper. The line heating path was generated by slicing the STL model of the steel plate using a series of planes, and the models of the heating equipment of ship plate steel were build, and the heating process of ship plate steel can be simulated by inputting the models of the heating equipment into the simulation system that was built by using VC++ and OpenGL. The case study shows that the method can primely solve the inconvenient of manual heating and the whole heating process can be observed by the simulation so that the heating process can be made a reasonable monitoring, and the heating path generation and simulation software are runs stably and reliably.


2012 ◽  
Vol 544 ◽  
pp. 268-273
Author(s):  
Lei Yang ◽  
Liang Gao

Line heating is the main method for forming compound curved shells of hull. The accuracy of final deformation and the productivity depend on the experience of the workers. To predict the plate deformation, the explicit mathematical model for deformation and the main influencing factors by FEA and GEP is established in this paper. The main influencing factors in line heating process were analyzed firstly. Then, 16 group deformation results of steel plate under the five main influencing factors were obtained by FEA. At last, the explicit mathematical model for deformation and the main influencing factors was established.


Materia Japan ◽  
2009 ◽  
Vol 48 (1) ◽  
pp. 26-28
Author(s):  
Keiji Ueda ◽  
Shinichi Suzuki ◽  
Shinji Mitao ◽  
Takayuki Ito ◽  
Teruhisa Kinugawa

2000 ◽  
Vol 16 (02) ◽  
pp. 121-132
Author(s):  
Morinobu Ishiyama ◽  
Yoshihiko Tango

Ishikawajima-Harima Heavy Industries Co., Ltd. (IHI) has successfully employed the logic of the Finite Element Method on the principle of Thermal Forming or Line Heating, which facilitates use of computer aided, fully automated line heating machines for forming any curvature precisely and efficiently on a hull steel plate in the shipbuilding process. It is undesirable for the future in line heating that only an experienced technician is able to be skilled in the use of existing line heating f1 or steel plate forming. Accuracy of shape formed by existing line heating is not necessarily well controlled and work at succeeding stages is adversely affected by inaccurate interim products, though it is a very useful method informing steel plates and all apparatus required for line heating is just light tools. The IHI-Advanced Line-heating Process for Hull-steel Assembly (IHI-ALPHA) has succeeded in solving these problems.


2006 ◽  
Vol 22 (03) ◽  
pp. 184-193
Author(s):  
Yujun Liu ◽  
Zhuoshang Ji ◽  
Yanping Deng ◽  
Jun Zhang ◽  
Ji Wang

Line heating is an effective and economical method for forming metal plates into three-dimensional shaped plates for ships, trains, and airplanes. When a curved plate subject to deformation is formed in line-heating process, the deformed shape is repeatedly inspected and reformed to reach the designed shape. Efficient automatic inspection and reforming processes are essential to enhance productivity in the whole manufacturing process. In this paper, efficient algorithms for inspection and reforming of double-curved plates are introduced. These algorithms have been developed to automatically inspect the transverse and longitudinal shape of plate surfaces and provide technical parameters to reform the unformed plates. The longitudinal shape of the plate surface is examined based on a shell plate development with plastic deformation during the plate formation, and the transverse shape is inspected through error analyses of transverse curvature radiuses. How to use the inspection results to reform unformed plates is discussed. In the end, experiments are performed with comparison to the current industrial plate manufacture, and results show a prospective application of our algorithms to the practical manufacturing of doublecurved plates. The methods presented in this study may play a role in realizing the automation of the entire curved-plate manufacturing process.


2009 ◽  
Vol 25 (04) ◽  
pp. 182-190 ◽  
Author(s):  
Jackyou Noh ◽  
Jong Gye Shin ◽  
Kwang Hee Ko ◽  
Jae An Chun

Automated line heating systems have been developed based on stand-alone operation with no consideration of the extensibility and maintainability. In the line heating shop, many of the line heating works are performed simultaneously; therefore, a collaborative and simultaneous automated line heating system is needed. In order to develop such a new line heating system, the current line heating process was analyzed, and then a distributed and automated process was determined, and the parts to be distributed and automated were identified to propose a distributed and automated line heating system based on modularization and network. Information and data flow from production design to robot control have been analyzed and integrated in the system. The system has two main processes: the calculation of the line heating information and execution of a working unit without calculation. A prototype of the system has been developed to study the feasibility of the system. Tests were carried out by using real production design data of a middle-sized Korean shipyard.


Sign in / Sign up

Export Citation Format

Share Document