scholarly journals Thermal field prediction in DED manufacturing process using Artificial Neural Network

2021 ◽  
Author(s):  
Seifallah Fetni ◽  
Quy Duc Thinh Pham ◽  
Van Xuan Tran ◽  
Laurent Duchêne ◽  
Hoang Son Tran ◽  
...  

In the last decade, machine learning is increasingly attracting researchers in several scientific areas and, in particular, in the additive manufacturing field. Meanwhile, this technique remains as a black box technique for many researchers. Indeed, it allows obtaining novel insights to overcome the limitation of classical methods, such as the finite element method, and to take into account multi-physical complex phenomena occurring during the manufacturing process. This work presents a comprehensive study for implementing a machine learning technique (artificial neural network) to predict the thermal field evolution during the direct energy deposition of 316L stainless steel and tungsten carbides. The framework consists of a finite element thermal model and a neural network. The influence of the number of hidden layers and the number of nodes in each layer was also investigated. The results showed that an architecture based on 3 or 4 hidden layers and the rectified linear unit as the activation function lead to obtaining a high fidelity prediction with an accuracy exceeding 99%. The impact of the chosen architecture on the model accuracy and CPU usage was also highlighted. The proposed framework can be used to predict the thermal field when simulating multi-layer deposition.

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4242
Author(s):  
Fausto Valencia ◽  
Hugo Arcos ◽  
Franklin Quilumba

The purpose of this research is the evaluation of artificial neural network models in the prediction of stresses in a 400 MVA power transformer winding conductor caused by the circulation of fault currents. The models were compared considering the training, validation, and test data errors’ behavior. Different combinations of hyperparameters were analyzed based on the variation of architectures, optimizers, and activation functions. The data for the process was created from finite element simulations performed in the FEMM software. The design of the Artificial Neural Network was performed using the Keras framework. As a result, a model with one hidden layer was the best suited architecture for the problem at hand, with the optimizer Adam and the activation function ReLU. The final Artificial Neural Network model predictions were compared with the Finite Element Method results, showing good agreement but with a much shorter solution time.


Author(s):  
Sara Zahedian ◽  
Przemysław Sekuła ◽  
Amir Nohekhan ◽  
Zachary Vander Laan

Traffic volumes are an essential input to many highway planning and design models; however, collecting this data for all road network segments is neither practical nor cost-effective. Accordingly, transportation agencies must find ways to leverage limited ground truth volume data to obtain reasonable estimates at scale on the statewide network. This paper aims to investigate the impact of selecting a subset of available automatic traffic recorders (ATRs) (i.e., the ground truth volume data source) and incorporating their data as explanatory variables into a previously developed machine learning regression model for estimating hourly traffic volumes. The study introduces a handful of strategies for selecting this subset of ATRs and walks through the process of choosing them and training models using their data as additional inputs using the New Hampshire road network as a case study. The results reveal that the overall performance of the artificial neural network (ANN) machine learning model improves with the additional inputs of selected ATRs. However, this improvement is more significant if the ATRs are selected based on their spatial distribution over the traffic message channel (TMC) network. For instance, selecting eight ATR stations according to the TMC coverage-based strategy and training the ANN with their inputs leads to average relative reductions of 35.39% and 13.44% in the mean absolute percentage error (MAPE) and error to maximum flow ratio (EMFR), respectively. The results achieved by this study can be further expanded to create a practical strategy for optimizing the number and location of ATRs through transportation networks in a state.


2020 ◽  
Vol 15 ◽  
Author(s):  
Elham Shamsara ◽  
Sara Saffar Soflaei ◽  
Mohammad Tajfard ◽  
Ivan Yamshchikov ◽  
Habibollah Esmaili ◽  
...  

Background: Coronary artery disease (CAD) is an important cause of mortality and morbidity globally. Objective : The early prediction of the CAD would be valuable in identifying individuals at risk, and in focusing resources on its prevention. In this paper, we aimed to establish a diagnostic model to predict CAD by using three approaches of ANN (pattern recognition-ANN, LVQ-ANN, and competitive ANN). Methods: One promising method for early prediction of disease based on risk factors is machine learning. Among different machine learning algorithms, the artificial neural network (ANN) algo-rithms have been applied widely in medicine and a variety of real-world classifications. ANN is a non-linear computational model, that is inspired by the human brain to analyze and process complex datasets. Results: Different methods of ANN that are investigated in this paper indicates in both pattern recognition ANN and LVQ-ANN methods, the predictions of Angiography+ class have high accuracy. Moreover, in CNN the correlations between the individuals in cluster ”c” with the class of Angiography+ is strongly high. This accuracy indicates the significant difference among some of the input features in Angiography+ class and the other two output classes. A comparison among the chosen weights in these three methods in separating control class and Angiography+ shows that hs-CRP, FSG, and WBC are the most substantial excitatory weights in recognizing the Angiography+ individuals although, HDL-C and MCH are determined as inhibitory weights. Furthermore, the effect of decomposition of a multi-class problem to a set of binary classes and random sampling on the accuracy of the diagnostic model is investigated. Conclusion : This study confirms that pattern recognition-ANN had the most accuracy of performance among different methods of ANN. That’s due to the back-propagation procedure of the process in which the network classify input variables based on labeled classes. The results of binarization show that decomposition of the multi-class set to binary sets could achieve higher accuracy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhonghui Thong ◽  
Jolena Ying Ying Tan ◽  
Eileen Shuzhen Loo ◽  
Yu Wei Phua ◽  
Xavier Liang Shun Chan ◽  
...  

AbstractRegression models are often used to predict age of an individual based on methylation patterns. Artificial neural network (ANN) however was recently shown to be more accurate for age prediction. Additionally, the impact of ethnicity and sex on our previous regression model have not been studied. Furthermore, there is currently no age prediction study investigating the lower limit of input DNA at the bisulfite treatment stage prior to pyrosequencing. Herein, we evaluated both regression and ANN models, and the impact of ethnicity and sex on age prediction for 333 local blood samples using three loci on the pyrosequencing platform. Subsequently, we trained a one locus-based ANN model to reduce the amount of DNA used. We demonstrated that the ANN model has a higher accuracy of age prediction than the regression model. Additionally, we showed that ethnicity did not affect age prediction among local Chinese, Malays and Indians. Although the predicted age of males were marginally overestimated, sex did not impact the accuracy of age prediction. Lastly, we present a one locus, dual CpG model using 25 ng of input DNA that is sufficient for forensic age prediction. In conclusion, the two ANN models validated would be useful for age prediction to provide forensic intelligence leads.


2020 ◽  
Vol 8 (10) ◽  
pp. 766
Author(s):  
Dohan Oh ◽  
Julia Race ◽  
Selda Oterkus ◽  
Bonguk Koo

Mechanical damage is recognized as a problem that reduces the performance of oil and gas pipelines and has been the subject of continuous research. The artificial neural network in the spotlight recently is expected to be another solution to solve the problems relating to the pipelines. The deep neural network, which is on the basis of artificial neural network algorithm and is a method amongst various machine learning methods, is applied in this study. The applicability of machine learning techniques such as deep neural network for the prediction of burst pressure has been investigated for dented API 5L X-grade pipelines. To this end, supervised learning is employed, and the deep neural network model has four layers with three hidden layers, and the neural network uses the fully connected layer. The burst pressure computed by deep neural network model has been compared with the results of finite element analysis based parametric study, and the burst pressure calculated by the experimental results. According to the comparison results, it showed good agreement. Therefore, it is concluded that deep neural networks can be another solution for predicting the burst pressure of API 5L X-grade dented pipelines.


2021 ◽  
Author(s):  
Sascha Flaig ◽  
Timothy Praditia ◽  
Alexander Kissinger ◽  
Ulrich Lang ◽  
Sergey Oladyshkin ◽  
...  

<p>In order to prevent possible negative impacts of water abstraction in an ecologically sensitive moor south of Munich (Germany), a “predictive control” scheme is in place. We design an artificial neural network (ANN) to provide predictions of moor water levels and to separate hydrological from anthropogenic effects. As the moor is a dynamic system, we adopt the „Long short-term memory“ architecture.</p><p>To find the best LSTM setup, we train, test and compare LSTMs with two different structures: (1) the non-recurrent one-to-one structure, where the series of inputs are accumulated and fed into the LSTM; and (2) the recurrent many-to-many structure, where inputs gradually enter the LSTM (including LSTM forecasts from previous forecast time steps). The outputs of our LSTMs then feed into a readout layer that converts the hidden states into water level predictions. We hypothesize that the recurrent structure is the better structure because it better resembles the typical structure of differential equations for dynamic systems, as they would usually be used for hydro(geo)logical systems. We evaluate the comparison with the mean squared error as test metric, and conclude that the recurrent many-to-many LSTM performs better for the analyzed complex situations. It also produces plausible predictions with reasonable accuracy for seven days prediction horizon.</p><p>Furthermore, we analyze the impact of preprocessing meteorological data to evapotranspiration data using typical ETA models. Inserting knowledge into the LSTM in the form of ETA models (rather than implicitly having the LSTM learn the ETA relations) leads to superior prediction results. This finding aligns well with current ideas on physically-inspired machine learning.</p><p>As an additional validation step, we investigate whether our ANN is able to correctly identify both anthropogenic and natural influences and their interaction. To this end, we investigate two comparable pumping events under different meteorological conditions. Results indicate that all individual and combined influences of input parameters on water levels can be represented well. The neural networks recognize correctly that the predominant precipitation and lower evapotranspiration during one pumping event leads to a lower decrease of the hydrograph.</p><p>To further demonstrate the capability of the trained neural network, scenarios of pumping events are created and simulated.</p><p>In conclusion, we show that more robust and accurate predictions of moor water levels can be obtained if available physical knowledge of the modeled system is used to design and train the neural network. The artificial neural network can be a useful instrument to assess the impact of water abstraction by quantifying the anthropogenic influence.</p>


Sign in / Sign up

Export Citation Format

Share Document