scholarly journals Raster analysis of Fused Filament Fabrication process

2021 ◽  
Author(s):  
Roberto Spina ◽  
Bruno Cavalcante

The objective of the present work is to study the raster generation to realize Fused Filament Fabrication parts. The research in this paper focused on the evaluation of the deposition of a simple geometry with a FFF machine, supported by an analytical model to compute the build time, also evaluating the geometrical variations caused by changes in process parameters. The main parameters were the print temperature and speed as a function of the thermal and rheological properties of the PLA filament. The study identified essential correlations between process parameters, raster dimensions, and filament properties. An experimental procedure, supported by an analytical model, was implemented for computing raster time and material dimensions.

2020 ◽  
Vol 35 ◽  
pp. 101331
Author(s):  
Paromita Nath ◽  
Joseph D. Olson ◽  
Sankaran Mahadevan ◽  
Yung-Tsun Tina Lee

Author(s):  
Marshall Quinn ◽  
Ugo Lafont ◽  
Johan Versteegh ◽  
Jian Guo

2021 ◽  
Vol 14 ◽  
Author(s):  
Aniket Yadav ◽  
Piyush Chohan ◽  
Ranvijay Kumar ◽  
Jasgurpreet Singh Chohan ◽  
Raman Kumar

Background: Additive manufacturing is the most famous technology which requires materials or composites to be fabricated with layer by layer deposition strategy. Due to its lower cost, higher accuracy and less material wastage; this technology is used in almost every sector. But in many applications there is a need to alter the properties of a product in a certain direction with the help of some reinforcements. With the use of reinforcements, composite layers can be fabricated using additive manufacturing technique which will enhance the directional properties. A novel apparatus is designed to spray the reinforcement material into the printed structures in a very neat and precise manner. This spray nozzle is fully automated, which works according to tool-paths generated by slicing software. The alternate deposition of layers of reinforcement and build materials helped to fabricate customized composite products. Objective: The objective of present study is to design and analyze the working principle of novel technique which has been developed to fabricate composite materials using additive manufacturing. The apparatus is numerically controlled by computer according to CAD data which facilitates the deposition of alternate layers of reinforcement and matrix material. The major challenges during the design process and function of each component has been explored. Methods: The design process is initiated after comprehensive literature review performed to study previous composite manufacturing processes. The recent patents published by different patent offices of the world are studied in detail and analysis has been used to design a low cost composite fabrication apparatus. A liquid dispensing device comprises a storage tank attached with a pump and microprocessor. The microprocessor receives the signal from the computer as per tool paths generated by slicing software which decides the spray of reinforcements on polymer layers. The spraying apparatus moves in coordination with the primary nozzle of the Fused Filament Fabrication process. Results: The hybridization of Fused Filament Fabrication [process with metal spray process has been successfully performed. The apparatus facilitates the fabrication of low cost composite materials along with flexibility of complete customization of composite manufacturing process. The anisotropic behaviour of products can be easily controlled and managed during fabrication which can be used for different applications.


2021 ◽  
pp. 095400832110419
Author(s):  
Lovin K John ◽  
Ramu Murugan ◽  
Sarat Singamneni

The development of fused filament fabrication has extended the range of application of additive manufacturing in various areas of research. However, the mechanical strength of the fused filament fabrication–printed parts were considerably lower than that of parts fabricated by other conventional methods, owing to the observed anisotropic behaviour and formation of voids by weak interlayer diffusion. Intense studies on the effect of design and process parameters of the printed parts on the mechanical properties have been done, whereas studies on the effect of build orientations and raster patterns needs special concern. The main aim of this work is to fabricate parts printed using quasi-isotropic laminate arrangement of rasters, achieved by a raster layup of [45/0/−45/90]s, and to compare their mechanical properties with those of the commonly used 0°/90° (cross) and 45°/−45° (crisscross) raster oriented parts. The quasi-isotropic–oriented samples were observed with improved mechanical behaviour in tensile, compressive, flexural and impact tests compared to the commonly employed raster orientations.


2020 ◽  
Vol 2 (6) ◽  
Author(s):  
Kyriaki-Evangelia Aslani ◽  
Konstantinos Kitsakis ◽  
John D. Kechagias ◽  
Nikolaos M. Vaxevanidis ◽  
Dimitrios E. Manolakos

Sign in / Sign up

Export Citation Format

Share Document