scholarly journals Material and process engineering aspects to improve the quality of the bonding layer in a laser-assisted fused filament fabrication process

2021 ◽  
pp. 102105
Author(s):  
Gerhard Bräuer ◽  
Klaus Sachsenhofer ◽  
Reinhold W. Lang
Author(s):  
Marshall Quinn ◽  
Ugo Lafont ◽  
Johan Versteegh ◽  
Jian Guo

2021 ◽  
Vol 14 ◽  
Author(s):  
Aniket Yadav ◽  
Piyush Chohan ◽  
Ranvijay Kumar ◽  
Jasgurpreet Singh Chohan ◽  
Raman Kumar

Background: Additive manufacturing is the most famous technology which requires materials or composites to be fabricated with layer by layer deposition strategy. Due to its lower cost, higher accuracy and less material wastage; this technology is used in almost every sector. But in many applications there is a need to alter the properties of a product in a certain direction with the help of some reinforcements. With the use of reinforcements, composite layers can be fabricated using additive manufacturing technique which will enhance the directional properties. A novel apparatus is designed to spray the reinforcement material into the printed structures in a very neat and precise manner. This spray nozzle is fully automated, which works according to tool-paths generated by slicing software. The alternate deposition of layers of reinforcement and build materials helped to fabricate customized composite products. Objective: The objective of present study is to design and analyze the working principle of novel technique which has been developed to fabricate composite materials using additive manufacturing. The apparatus is numerically controlled by computer according to CAD data which facilitates the deposition of alternate layers of reinforcement and matrix material. The major challenges during the design process and function of each component has been explored. Methods: The design process is initiated after comprehensive literature review performed to study previous composite manufacturing processes. The recent patents published by different patent offices of the world are studied in detail and analysis has been used to design a low cost composite fabrication apparatus. A liquid dispensing device comprises a storage tank attached with a pump and microprocessor. The microprocessor receives the signal from the computer as per tool paths generated by slicing software which decides the spray of reinforcements on polymer layers. The spraying apparatus moves in coordination with the primary nozzle of the Fused Filament Fabrication process. Results: The hybridization of Fused Filament Fabrication [process with metal spray process has been successfully performed. The apparatus facilitates the fabrication of low cost composite materials along with flexibility of complete customization of composite manufacturing process. The anisotropic behaviour of products can be easily controlled and managed during fabrication which can be used for different applications.


2020 ◽  
Vol 2 (6) ◽  
Author(s):  
Kyriaki-Evangelia Aslani ◽  
Konstantinos Kitsakis ◽  
John D. Kechagias ◽  
Nikolaos M. Vaxevanidis ◽  
Dimitrios E. Manolakos

Author(s):  
Xuedong Chen ◽  
Rong Yuan ◽  
Bing Wang ◽  
Tiecheng Yang ◽  
Pingjin Li ◽  
...  

In recent ten years, a number of cracking cases were reported on the in-service high-strength steel spheric tank made of 07MnCrMoVR and 07MnNiCrMoVDR steels (CF-62 steel for short) which were developed in China independently. Based on field survey, actual vessel inspection and failure analysis, it is pointed out that the quality of the steels, the problems existing in design and fabrication process and incompleteness of relevant standards are the major cause of cracking. Recommendations for cracking prevention of the high-strength steel spheric tank made of Chinese CF-62 steel are proposed.


Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3219
Author(s):  
Mohammad Saleh Meiabadi ◽  
Mahmoud Moradi ◽  
Mojtaba Karamimoghadam ◽  
Sina Ardabili ◽  
Mahdi Bodaghi ◽  
...  

Polylactic acid (PLA) is a highly applicable material that is used in 3D printers due to some significant features such as its deformation property and affordable cost. For improvement of the end-use quality, it is of significant importance to enhance the quality of fused filament fabrication (FFF)-printed objects in PLA. The purpose of this investigation was to boost toughness and to reduce the production cost of the FFF-printed tensile test samples with the desired part thickness. To remove the need for numerous and idle printing samples, the response surface method (RSM) was used. Statistical analysis was performed to deal with this concern by considering extruder temperature (ET), infill percentage (IP), and layer thickness (LT) as controlled factors. The artificial intelligence method of artificial neural network (ANN) and ANN-genetic algorithm (ANN-GA) were further developed to estimate the toughness, part thickness, and production-cost-dependent variables. Results were evaluated by correlation coefficient and RMSE values. According to the modeling results, ANN-GA as a hybrid machine learning (ML) technique could enhance the accuracy of modeling by about 7.5, 11.5, and 4.5% for toughness, part thickness, and production cost, respectively, in comparison with those for the single ANN method. On the other hand, the optimization results confirm that the optimized specimen is cost-effective and able to comparatively undergo deformation, which enables the usability of printed PLA objects.


2021 ◽  
Author(s):  
Roberto Spina ◽  
Bruno Cavalcante

The objective of the present work is to study the raster generation to realize Fused Filament Fabrication parts. The research in this paper focused on the evaluation of the deposition of a simple geometry with a FFF machine, supported by an analytical model to compute the build time, also evaluating the geometrical variations caused by changes in process parameters. The main parameters were the print temperature and speed as a function of the thermal and rheological properties of the PLA filament. The study identified essential correlations between process parameters, raster dimensions, and filament properties. An experimental procedure, supported by an analytical model, was implemented for computing raster time and material dimensions.


Sign in / Sign up

Export Citation Format

Share Document