scholarly journals Numerical simulation of a non-isothermal power-law fluid flow in a channel with abrupt contraction

Author(s):  
К.Е. Рыльцева ◽  
Г.Р. Шрагер

Проводится исследование ламинарного стационарного неизотермического течения степенной жидкости в цилиндрическом канале с внезапным сужением. Формулируется математическая модель течения, которая включает уравнения гидродинамики, записанные в переменных функция токавихрь, и уравнение энергии. Реологические свойства жидкости описываются степенным законом Оствальда де Ваале, в модифицированной форме которого учитывается зависимость эффективной вязкости от температуры. Для решения задачи используется метод установления с последующей реализацией конечноразностного метода на основе схемы переменных направлений. Выполняется оценка влияния вязкой диссипации на структуру потока псевдопластичной, ньютоновской и дилатантной жидкостей. Демонстрируются поля температуры и эффективной вязкости. Приводятся результаты параметрического исследования коэффициента местного гидравлического сопротивления. Viscous fluid flow through a sudden contraction is frequently encountered in a number of industrial equipment dealing with processing and transporting of liquid materials. Generally, the fluid exhibits non-Newtonian behavior and flows under non-isothermal conditions. Such flow is characterized by specific structure, viscous dissipation, and local pressure losses. In this work, a numerical solution to the problem of a non-isothermal power-law fluid flow through a two-to-one axisymmetric abrupt contraction is presented. Mathematical model includes the momentum, continuity and energy equations written in terms of stream function, vorticity and temperature variables. The rheological behavior of the fluid is specified by the Ostwald-de Waele power law. The proposed flow model accounts for viscous dissipation and temperature-dependent rheological properties. To solve the problem, the relaxation method is used, followed by the implementation of the finitedifference method based on the scheme of alternative directions. The equations in a discrete form are solved using the tridiagonal matrix algorithm. It is found that the flow includes both one-dimensional and two-dimensional flow regions. The lengths of these regions are studied versus the Reynolds number, the Peclet numder, and power-law index. Comparing isothermal and non-isothermal cases, it is revealed that an increase in the power-law index leads to a decrease in the downstream two-dimensional zone in the first case, and, in contrast, it provides a significant increase in the second case. The viscosity and temperature distributions are presented to show the effect of the Peclet number for pseudoplastic, Newtonian, and dilatant fluids. The parametric investigation of the local pressure losses is implemented in a wide range of the main parameters.

Author(s):  
Farhan Ahmed ◽  
Mazhar Iqbal ◽  
Noreen Sher Akbar

Here we numerically analyse the effects of viscous dissipation and Joule heating on forced convection heat transfer rate of electrically conducting magnetohydrodynamic, ( MHD) power law fluid flow through annular duct. Mathematical model is formulated for constant properties power law fluid with steady, incompressible and laminar fully developed flow assumptions. Heat transfer results are determined by taking constant heat flux with peripheral wall temperature “known as H1 thermal boundary condition” at the solid walls of the channel. It has been observed that the effect of viscous dissipation reduces due to enhance damping magnetic field effect by increasing the value of Hartman number, Ha, especially in the case of shear thickening fluids.


2016 ◽  
Vol 685 ◽  
pp. 47-50 ◽  
Author(s):  
Evgeny Borzenko ◽  
Kira Boyarkina ◽  
Gennady R. Shrager

In this paper the laminar stationary power-law fluid flow through an axisymmetric pipe contraction is investigated. The mathematical statement of the problem is formulated using stream function and vorticity variables. For obtaining a stationary solution the relaxation method with following realization of numerical algorithm based on finite difference alternative directions scheme is utilized. Implemented parametrical investigations allow obtaining the dependence of local resistance coefficients on Reynolds number, nonlinearity degree and piping contraction ratio.


2021 ◽  
Vol 56 (1) ◽  
pp. 1-9
Author(s):  
E. I. Borzenko ◽  
I. A. Ryl’tsev ◽  
G. R. Schrager

2018 ◽  
Vol 9 (7) ◽  
pp. 871-879
Author(s):  
Rajesh Shrivastava ◽  
R. S. Chandel ◽  
Ajay Kumar ◽  
Keerty Shrivastava and Sanjeet Kumar

2015 ◽  
Vol 39 (21) ◽  
pp. 6425-6437 ◽  
Author(s):  
J.A. Kolodziej ◽  
M. Mierzwiczak ◽  
M. Ciałkowski

1992 ◽  
Vol 59 (2) ◽  
pp. 431-437 ◽  
Author(s):  
M. G. Satish ◽  
J. Zhu

Finite difference solutions for a power-law fluid flow through an assemblage of solid particles at low Reynolds numbers are obtained using both the free-surface cell model and the zero-vorticity cell model. It is shown that, unlike in the case of power-law fluid flow past a single solid sphere, the flow drag decreases with decrease of flow behavior index, and that the degree of this reduction is more significant at low voidage. The results from this study are found to be in good agreement with the approximate solutions at slight pseudoplastic anomaly and the available experimental data. The results are presented in closed form and compare favorably with the variational bounds and the modified Blake-Kozeny equations. Numerical results show that a decrease in the flow behavior index leads to a slight increase in the mass transfer rate for an assemblage of solid spheres, but this increase is found to be small compared with that for a single solid sphere.


Sign in / Sign up

Export Citation Format

Share Document