Two-dimensional model of wave hydrodynamics with high accuracy dispersion relation

Author(s):  
Гаяз Салимович Хакимзянов ◽  
Зинаида Ивановна Федотова ◽  
Денис Дутых

Полностью нелинейная слабо дисперсионная модель волновой гидродинамики, учитывающая подвижность дна, модифицирована с целью повышения точности дисперсионного соотношения. Проведено сравнение с известными аналогичными моделями и выявлено различие в асимптотическом поведении их фазовых скоростей. Application of nonlinear dispersion wave hydrodynamics (NLD-) models for solving practical problems constantly stimulates the search for ways to expand their field of applicability and achieve a more accurate reproduction of the characteristics of the simulated processes. A productive step in this direction turned out to be the method proposed by Madsen & Sørensen (1992), which made it possible to increase the approximation order of the dispersion relation of the Peregrine model while preserving the third order of derivatives included in the original equations and the second order of long-wave approximation. Later, other approaches were proposed to achieve this goal, which had a noticeable effect on expanding the field of applicability of NLD-models (for example, Nwogu (1993), Beji & Nadaoka (1996)). In the present work, we set a similar goal - to improve the properties of the dispersion relation of the model (and, therefore, the phase velocity), providing the Pade approximation (2,2) of the dispersion relation of the 3D model of potential flows. In contrast to earlier works on this subject, where weakly non-linear models were considered, we proceed from the fully nonlinear weakly dispersive two-dimensional Serre - Green - Naghdi (SGN-) model. The novelty of the proposed method consists in modifying the formula for the non-hydrostatic part of the pressure, while the accuracy of the long-wave approximation is preserved. It is shown that in some special cases the obtained fully nonlinear model is close to the known models (for example, after appropriate simplification it coincides with the model from Beji & Nadaoka (1996)). A dispersion analysis was performed one of the results of which was the conclusion that for sufficiently long waves the approximation order of the dispersion relation of the 3D model increases from the second to the fourth and an improvement was also achieved for more short waves. The proposed modification of the SGN-model is invariant with respect to the Galilean transformation; the law of conservation of mass and the law of balance of the total momentum are satisfied. However, the law of conservation of total energy is not satisfied. Apparently all NLD-models with improved dispersion characteristics possess this negative quality.

Author(s):  
Гаяз Салимович Хакимзянов ◽  
Зинаида Ивановна Федотова ◽  
Денис Дутых

Построена полностью нелинейная слабо дисперсионная модель волновой гидродинамики четвертого порядка длинноволновой аппроксимации. За скорость в модели взята усредненная по глубине горизонтальная составляющая скорости трехмерного течения. Учтена подвижность дна. Выполненная модификация модели обеспечивает шестой и восьмой порядки точности аппроксимации дисперсионного соотношения трехмерной модели потенциальных течений. In the numerical simulation of medium-length surface waves in the framework of nonlinear dispersive (NLD) models, an increased accuracy of reproducing the characteristics of the simulated processes is required. A number of works (Kirby (2016), e.g.) describe approaches to improve the known NLD-models. In particular, NLD-models of the fourth order of the long-wave approximation have been proposed and, based on a comparison of numerical results with experimental data, their high accuracy has been demonstrated (Ataie-Ashtiani and Najafi-Jilani (2007); Zhou and Teng (2010)). In these new models, the horizontal component of the velocity vector of the threedimensional (FNPF-) model of potential flows at a certain surface located between the bottom and the free boundary was chosen as the velocity vector. The result was a very cumbersome form of equations. In addition, the laws of conservation of mass and momentum do not hold for these models. The main result of this work is the derivation of a two-parameter fully nonlinear weakly dispersive (mSGN4) model of the fourth order of the long-wave approximation, which is a generalization of the well-known Serre-Green-Naghdi (SGN) second order model. In the derivation, the velocity averaged over the thickness of the liquid layer was used. The assumption about the potentiality of the three-dimensional flow was used only at the stage of closing the model. The movement of the bottom is taken into account. For the derived model, the law of conservation of mass is satisfied, and the law of conservation of total momentum is satisfied in the case of a horizontal stationary bottom. The equations of the mSGN4-model are invariant under the Galilean transformation and are presented in a compact form similar to the equations of gas dynamics. The dispersion relation of the mSGN4-model has the fourth order of accuracy in the long wave region and satisfactorily approximates the dispersion relation of the FNPF-model in the short wave region. Moreover, with a special choice of the values of the model parameters, an increased accuracy of approximating the dispersion relation of the FNPF-model at long waves (sixth or eighth order) is achieved. Analysis of the deviations of the values of the phase velocity of the mSGN4 model from the values of the “reference” speed of the FNPF model in the entire wavelength range showed that the most preferable is the mSGN4 model with the parameter values corresponding to the Pad’e approximant (2,4).


2007 ◽  
Vol 5 ◽  
pp. 273-278
Author(s):  
V.Yu Liapidevskii

Nonequilibrium flows of an inhomogeneous liquid in channels and pipes are considered in the long-wave approximation. Nonlinear dispersion hyperbolic flow models are derived allowing taking into account the influence of internal inertia during the relative motion of phases upon the structure of nonlinear wave fronts. The asymptotic derivation of dispersion hyperbolic models is shown on the example of classical Boussinesq equations. It is shown that the hyperbolic approximation of the equations has the same order of accuracy as the primary model.


1976 ◽  
Vol 1 (15) ◽  
pp. 61
Author(s):  
Toshio Iwasaki

Although numerical computations of the generation and propagation of tsunamis are successfully achieved in recent years, modeling of their wave sources is still a big problem. Three kinds of, wave source model, that is statistical, oceanographic and fault model, are studied in this paper. It is found that the first model gives reasonable wave heights as shown in the previous paper, the second one presents roughly one half of those for the first model and the last one produces too small wave heights. Based on the analysis of computed results, nature of undulations off from the shore boundary, directivity of wave propagation and the spindle shaped leading part are discussed. Comparing magnitude of various wave parameters for the leading wave along the minor axis of the wave source, it is shown that the long wave approximation modified by the slope effect illustrates the tsunamis in deep region of the sea and the slope effect is most dominant in shallow region.


2018 ◽  
Vol 855 ◽  
Author(s):  
Dipin S. Pillai ◽  
R. Narayanan

The nonlinear evolution of an interface between a perfect conducting liquid and a perfect dielectric gas subject to periodic electrostatic forcing is studied under the long-wave approximation. It is shown that inertial thin films become unstable to finite-wavelength Faraday modes at the onset, prior to the long-wave pillaring instability reported in the lubrication limit. It is further shown that the pillaring-mode instability is subcritical in nature, with the interface approaching either the top or the bottom wall, depending on the liquid–gas holdup. On the other hand, the Faraday modes exhibit subharmonic or harmonic oscillations that nonlinearly saturate to standing waves at low forcing amplitudes. Unlike the pillaring mode, wherein the interface approaches the wall, Faraday modes may exhibit saturated standing waves when the instability is subcritical. At higher forcing amplitudes, the interface may approach either wall, again depending on the liquid–gas holdup. It is also shown that a gravitationally unstable configuration of such thin films, under the long-wave approximation, cannot be stabilized by periodic electrostatic forcing, unlike mechanical Faraday forcing. In this case, it is observed that the interface exhibits oscillatory sliding behaviour, approaching the wall in an ‘earthworm-like’ motion.


Sign in / Sign up

Export Citation Format

Share Document