scholarly journals Ring statistics in disordered solids: a parallel algorithm for clusters with hundred thousands of atoms

Author(s):  
Ф.В. Григорьев ◽  
В.Б. Сулимов ◽  
А.В. Тихонравов

Кольца, состоящие из различного числа атомов, являются основным структурным элементом во многих неупорядоченных веществах. В настоящей статье представлен параллельный алгоритм получения приближенной функции распределения колец по числу атомов, основанный на методе Монте-Карло. Алгоритм применен к кластерам диоксида кремния, содержащим до миллиона атомов. Исследована эффективность алгоритма, как функция числа используемых вычислительных ядер, вплоть до 1024. The rings consisting of various number of atoms are basic structural elements in many disordered solids. In this paper, a parallel algorithm for calculating an approximate ring distribution function by the number of atoms is proposed. The algorithm is based on the Monte Carlo method and is applied to SiO$_2$ clusters consisting of up to $10^6$ atoms. The efficiency of the algorithm is studied using up to 1024 computational cores.

2020 ◽  
Vol 6 (3) ◽  
pp. 155-160
Author(s):  
Anton D. Smirnov ◽  
Ekaterina V. Bogdanova ◽  
Pavel A. Pugachev ◽  
Ivan S. Saldikov ◽  
Mikhail Yu. Ternovykh ◽  
...  

After the accident at the Fukushima Daiichi NPP, the attention of the scientific community is riveted on how the consequences are being eliminated. Removing corium – a lava-like resolidified mixture of nuclear fuel with other structural elements of the reactor – remains the most difficult task, the solution of which can take several decades. It is extremely important to exclude the occurrence of any emergency processes during the removal of corium. The purpose of this work was to solve a coordinated hydrodynamic and neutronic problem characterized by a large number of randomly oriented and irregularly located corium particles in water as part of the development of a benchmark for this class of problems. Monte Carlo-based precision codes were used to perform a neutronic analysis. The positions of corium particles were determined from the numerical simulation results. The analysis results obtained using the codes involved showed good agreement for all the states considered. It was shown that the modern neutronic codes based on the Monte Carlo method successfully cope with the geometric formation and solution of the problem with a nontrivial distribution of corium particles in water. The results of the study can be used to justify the safety of corium handling procedures, including its extraction from a damaged power unit.


2007 ◽  
Vol 06 (03n04) ◽  
pp. 253-256
Author(s):  
L. V. GAVRILENKO ◽  
V. YA. ALESHKIN ◽  
A. A. DUBINOV

The impurity breakdown was simulated in numerical calculations. The distribution function for an electron in the electric field was calculated using the Monte-Carlo method. The electron concentration in the impurity ground state and in the first subband was determined by solving the rate equations. It was found out that a population inversion between the 1s-level and the bottom of the first subband is likely to arise. The requirements for the population inversion to occur were determined.


2020 ◽  
Vol 2020 (4) ◽  
pp. 25-32
Author(s):  
Viktor Zheltov ◽  
Viktor Chembaev

The article has considered the calculation of the unified glare rating (UGR) based on the luminance spatial-angular distribution (LSAD). The method of local estimations of the Monte Carlo method is proposed as a method for modeling LSAD. On the basis of LSAD, it becomes possible to evaluate the quality of lighting by many criteria, including the generally accepted UGR. UGR allows preliminary assessment of the level of comfort for performing a visual task in a lighting system. A new method of "pixel-by-pixel" calculation of UGR based on LSAD is proposed.


Author(s):  
V.A. Mironov ◽  
S.A. Peretokin ◽  
K.V. Simonov

The article is a continuation of the software research to perform probabilistic seismic hazard analysis (PSHA) as one of the main stages in engineering seismic surveys. The article provides an overview of modern software for PSHA based on the Monte Carlo method, describes in detail the work of foreign programs OpenQuake Engine and EqHaz. A test calculation of seismic hazard was carried out to compare the functionality of domestic and foreign software.


Sign in / Sign up

Export Citation Format

Share Document