In vivo efficacy of liposomal amphotericin B against clinical Aspergillus fumigatus isolates in two different immunosuppressed models of invasive aspergillosis

Author(s):  
Seyedmojtaba (Amir) Seyedmousavi
2017 ◽  
Vol 61 (6) ◽  
Author(s):  
Seyedmojtaba Seyedmousavi ◽  
Johan W. Mouton ◽  
Willem J. G. Melchers ◽  
Paul E. Verweij

ABSTRACT Using an immunocompetent murine model of invasive aspergillosis (IA), we previously reported that the efficacy of liposomal amphotericin B (L-AmB) (Ambisome) is not hampered by the presence of azole resistance mutations in Aspergillus fumigatus (S. Seyedmousavi, W. J. G. Melchers, J. W. Mouton, and P. E. Verweij, Antimicrob Agents Chemother 57:1866–1871, 2013, https://doi.org/10.1128/AAC.02226-12 ). We here investigated the role of immune suppression, i.e., neutropenia and steroid treatment, in L-AmB efficacy in mice infected with wild-type (WT) A. fumigatus and with azole-resistant A. fumigatus harboring a TR34/L98H mutation in the cyp-51A gene. Survival of treated animals at day 14 in both immunosuppressed models was significantly better than that of nontreated controls. A dose-response relationship was observed that was independent of the azole-resistant mechanism and the immunosuppression method used. In the neutropenic model, 100% survival was reached at an L-AmB dose of 16 mg/kg of body weight for the WT strain and the TR34/L98H isolate. In the steroid-treated group, 90.9% survival and 100% survival were achieved for the WT isolate and the TR34/L98H isolate with an L-AmB dose of 16 mg/kg, respectively. The 50% effective dose (ED50) was 1.40 mg/kg (95% confidence interval [CI], 0.66 to 3.00 mg/kg) for the WT isolate and 1.92 mg/kg (95% CI, 0.60 to 6.17 mg/kg) for the TR34/L98H isolate in the neutropenic model and was 2.40 mg/kg (95% CI, 1.93 to 2.97 mg/kg) for the WT isolate and 2.56 mg/kg (95% CI, 1.43 to 4.56 mg/kg) for the TR34/L98H isolate in the steroid-treated group. Overall, there were no significant differences between the two different immunosuppressed conditions in the efficacy of L-AmB against the wild-type and azole-resistant isolates (P > 0.9). However, the required L-AmB exposure was significantly higher than that seen in the immunocompetent model.


2019 ◽  
Vol 63 (6) ◽  
Author(s):  
Maria Siopi ◽  
Johan W. Mouton ◽  
Spyros Pournaras ◽  
Joseph Meletiadis

ABSTRACT In vitro pharmacokinetic/pharmacodynamic data of liposomal amphotericin B (L-AMB) were compared with animal data from neutropenic and nonneutropenic models of azole-susceptible and azole-resistant invasive aspergillosis. L-AMB was equally effective. The in vitro fCmax (maximum concentration of free drug)/MIC ratio associated with 50% of maximal activity was 0.31 (0.29 to 0.33), similar to that in neutropenic but not nonneutropenic mice (0.11 [0.06 to 0.20]). Simulation analysis indicated that standard L-AMB doses (1 to 3 mg/kg) are adequate for nonneutropenic patients, but higher doses (7.5 to 10 mg/kg) may be required for neutropenic patients for Aspergillus fumigatus isolates with MICs of 0.5 to 1 mg/liter.


2013 ◽  
Vol 57 (7) ◽  
pp. 3046-3059 ◽  
Author(s):  
Célimène Galiger ◽  
Matthias Brock ◽  
Grégory Jouvion ◽  
Amélie Savers ◽  
Marianna Parlato ◽  
...  

ABSTRACTAspergillus fumigatuscauses life-threatening infections, especially in immunocompromised patients. Common drugs for therapy of aspergillosis are polyenes, azoles, and echinocandins. However, despitein vitroefficacy of these antifungals, treatment failure is frequently observed. In this study, we established bioluminescence imaging to monitor drug efficacy underin vitroandin vivoconditions.In vitroassays confirmed the effectiveness of liposomal amphotericin B, voriconazole, and anidulafungin. Liposomal amphotericin B and voriconazole were fungicidal, whereas anidulafungin allowed initial germination of conidia that stopped elongation but allowed the conidia to remain viable.In vivostudies were performed with a leukopenic murine model. Mice were challenged by intranasal instillation with a bioluminescent reporter strain (5 × 105and 2.5 × 105conidia), and therapy efficacies of liposomal amphotericin B, voriconazole, and anidulafungin were monitored. For monotherapy, the highest treatment efficacy was observed with liposomal amphotericin B, whereas the efficacies of voriconazole and anidulafungin were strongly dependent on the infectious dose. When therapy efficacy was studied with different drug combinations, all combinations improved the rate of treatment success compared to that with monotherapy. One hundred percent survival was obtained for treatment with a combination of liposomal amphotericin B and anidulafungin, which prevented not only pulmonary infections but also infections of the sinus. In conclusion, combination therapy increases treatment success, at least in the murine infection model. In addition, our novel approach based on real-time imaging enablesin vivomonitoring of drug efficacy in different organs during therapy of invasive aspergillosis.


2003 ◽  
Vol 22 (7) ◽  
pp. 653-656 ◽  
Author(s):  
ZIJU ELANJIKAL ◽  
JAN SÖRENSEN ◽  
HELGA SCHMIDT ◽  
WOLFGANG DUPUIS ◽  
KATHRIN TINTELNOT ◽  
...  

2006 ◽  
Vol 50 (4) ◽  
pp. 1567-1569 ◽  
Author(s):  
William R. Kirkpatrick ◽  
Brent J. Coco ◽  
Thomas F. Patterson

ABSTRACT We evaluated combinations of voriconazole (VRC) and liposomal amphotericin B (L-AMB) in a guinea pig invasive aspergillosis model. Simultaneous VRC and L-AMB was most effective, although VRC monotherapy was also effective. These regimens as well as sequential L-AMB followed by VRC were more effective than L-AMB alone or VRC followed by L-AMB.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S576-S576
Author(s):  
Janam J Dave ◽  
Adilene Sandoval ◽  
Jon Olson ◽  
Jill Adler-Moore

Abstract Background Immunocompromised patients are very susceptible to pulmonary aspergillosis causing 50% mortality with present treatments, indicating a need for improved therapy. To address this, we standardized a nebulization method for effectively delivering liposomal amphotericin B (AmBisome®, AmBi) into lungs of Aspergillus fumigatus-infected mice. Methods AmBi particle characterization was done with a Cascade particle impactor and a Schuco S5000 nebulizer containing 1.33 mg/mL AmBi. For in vivo studies, AmBi was nebulized (neb) into a 12 compartment chamber (one mouse/compartment), following immunosuppression with 28 mg/kg triamcinolone IP (d-3, -1, +1). Mice were challenged d0 with 9 x 106A. fumigatus (ATCC#13073) and 4 hours post-challenge, divided into 5 groups (n = 12/gp): 5 days of 20 min/day neb AmBi (Gp1), 5 days of 10 min/day neb AmBi (Gp2), 20 min/day neb AmBi days 0, 1, 3, 5, 7 (Gp 3), 5 days of intravenous(IV) AmBi 7.5 mg/kg/day (Gp4) and IV PBS (Gp5). Seven mice/gp were monitored for survival to d21 and lungs, livers, kidneys, spleens (5 mice/gp) analyzed for mean amphotericin B µg/g and CFU/g. Results 87% of neb AmBi particles were between 0.43 mm to 3.3 mm allowing for drug penetration into 1°, 2° and terminal bronchi, bronchioles, and alveoli. This resulted in very good protection, with 20 min daily neb treatments (Gp1) giving 100% survival and 10 min daily neb treatments producing 71% survival (Gp2). There were no survivors in the PBS gp (P < 0.02 vs. Gp1 and Gp2). Every other day neb AmBi or daily IV AmBi was less effective (43% survival). In addition, neb AmBi for 20 min (Gp1) yielded significantly lower fungal burden in lungs vs. all other AmBi treatments (P < 0.02). While drug was detected in lungs of mice given 20 min of neb AmBi (2.6 µg/g), there was no drug detected in livers, kidneys or spleens of any mice given neb AmBi. In comparison, with IV AmBi, drug was detected in the lungs (7 µg/g), livers (204 µg/g), kidneys (38 µg/g), and spleens (114 µg/g). Conclusion Daily AmBi nebulization was an effective and potentially less nephrotoxic treatment for murine pulmonary aspergillosis since it achieved significantly lower tissue fungal burden and much better survival vs. daily IV AmBi, without delivering drug to the kidneys. Disclosures All authors: No reported disclosures.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 589 ◽  
Author(s):  
Chang-baek Lim ◽  
Sharif Md Abuzar ◽  
Pankaj Ranjan Karn ◽  
Wonkyung Cho ◽  
Hee Jun Park ◽  
...  

Here, we aimed to prepare and optimize liposomal amphotericin B (AmB) while using the supercritical fluid of carbon dioxide (SCF-CO2) method and investigate the characteristics and pharmacokinetics of the SCF-CO2-processed liposomal AmB. Liposomes containing phospholipids, ascorbic acid (vit C), and cholesterol were prepared by the SCF-CO2 method at an optimized pressure and temperature; conventional liposomes were also prepared using the thin film hydration method and then compared with the SCF-CO2-processed-liposomes. The optimized formulation was evaluated by in vitro hemolysis tests on rat erythrocytes and in vivo pharmacokinetics after intravenous administration to Sprague-Dawley rats and compared with a marketed AmB micellar formulation, Fungizone®, and a liposomal formulation, AmBisome®. The results of the characterization studies demonstrated that the SCF-CO2-processed-liposomes were spherical particles with an average particle size of 137 nm (after homogenization) and drug encapsulation efficiency (EE) was about 90%. After freeze-drying, mean particle size, EE, and zeta potential were not significantly changed. The stability study of the liposomes showed that liposomal AmB that was prepared by the SCF method was stable over time. In vivo pharmacokinetics revealed that the SCF-CO2-processed-liposomes were bioequivalent to AmBisome®; the hemolytic test depicted less hematotoxicity than Fungizone®. Therefore, this method could serve as a potential alternative for preparing liposomal AmB for industrial applications.


Sign in / Sign up

Export Citation Format

Share Document