Determination of Drug Loading Efficiency and Drug Release of Loperamide from Polymeric Nanocarriers

Author(s):  
Javier Morales
2020 ◽  
Vol 26 ◽  
pp. 720-723
Author(s):  
Christina Vincent ◽  
Kiran M.D ◽  
Jitha S. Jayan ◽  
Appukuttan Saritha

2015 ◽  
Vol 3 (5) ◽  
pp. 814-823 ◽  
Author(s):  
X.-L. Sun ◽  
P.-C. Tsai ◽  
R. Bhat ◽  
E. M. Bonder ◽  
B. Michniak-Kohn ◽  
...  

Residue structure affects the physicochemical properties, drug loading efficiency, and thermoresponsive drug release profiles of block copolymer micelles with pyrrolidone-based polymer cores.


2019 ◽  
Vol 20 (7) ◽  
pp. 1531 ◽  
Author(s):  
Seyed Alavi ◽  
Sitah Muflih Al Harthi ◽  
Hasan Ebrahimi Shahmabadi ◽  
Azim Akbarzadeh

This study aims to improve the cytotoxicity and potency of cisplatin-loaded polybutylcyanoacrylate (PBCA) nanoparticles (NPs) for the treatment of lung cancer through the modulation of temperature and polyethylene glycol (PEG) concentration as effective factors affecting the NPs’ properties. The NPs were synthesized using an anionic polymerization method and were characterized in terms of size, drug loading efficiency, drug release profile, cytotoxicity effects, drug efficacy, and drug side effects. In this regard, dynamic light scattering (DLS), scanning electron microscopy (SEM), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) methods, and hematoxylin and eosin (H&E) staining were used. The results showed that the size and the drug loading efficiency of the synthesized spherical NPs were 355–386 nm and 14–19%, respectively. Also, the drug release profile showed a controlled and slow drug release pattern with approximately 10% drug release over 48 h. In addition, the NPs significantly increased the cytotoxicity of the cisplatin in vitro environment by approximately 2 times and enhanced the therapeutic effects of the drug in vivo environment by increasing the survival time of lung-cancer-bearing mice by 20% compared to the standard drug receiver group. Also, the nanoformulation decreased the drug toxicity in an in vivo environment. According to the results, increasing the temperature and PEG concentration improved the properties of the drug loading efficiency, drug release profile, and cytotoxicity effect of drug-loaded NPs. Consequently, the synthesized formulation increased the survival of tumor-bearing mice and simultaneously decreased the cisplatin toxicity effects. In conclusion, the prepared nanoformulation can be considered a promising candidate for further evaluation for possible therapeutic use in the treatment of lung cancer.


2012 ◽  
Vol 584 ◽  
pp. 460-464 ◽  
Author(s):  
M Gajendiran ◽  
S. Balasubramanian

. A series of biodegradable amphiphilic tri-block copolymers (PLGA–PEG–PLGA) have been derived from the diblock copolymer poly (lactic–co–glycolic acid (PLGA)) and polyethylene glycol (PEG). The mycobacterium tuberculosis (MTB) drug pyrazinamide (PZA) loaded polymer nanoparticles (NPs) have been prepared by probe-sonication followed by w/o/w double emulsification technique. The copolymers have been characterized by FTIR and 1HNMR spectroscopic techniques, TG-DTA analysis, GPC analysis and powder XRD pattern. The MTB drug loaded polymeric NPs have been characterized by FESEM, powder XRD, HRTEM and XPS analysis. The drug loading efficiency, drug content and in vitro drug release studies have been carried out by spectrophotometry. The drug loading efficiency and drug content of triblock copolymeric NPs were higher than these of diblock copolymeric microparticles (MPs). The in vitro drug release studies indicate that the NPs exhibit initial burst release followed by controlled release of PZA for longer durations. The drug release kinetics mechanism has been evaluated by zero order, first order, Korsemeyer-Peppas (KP) and Higuchi models.


2020 ◽  
Vol 26 (4) ◽  
pp. 406-413
Author(s):  
Aram dokht khatibi Khatibi ◽  
Zarrin Eshaghi ◽  
Hamid Mosaddeghi ◽  
Davoud Balarak

Background: This study reports on the development of a controlled-release isoniazid (INH) drug delivery system using poly-є-caprolactone (PCL) functionalized magnetite-nanoparticles (MNPs), as a theoretical potential tool for tuberculosis (TB) chemotherapy. Method: The magnetite Fe3O4 core was fabricated by the co-precipitation method and coated with PCL by emulsion polymerization. INH was loaded onto the PCL-MNP surface to shape an INH-PCL-MNP nanocomposite. Deposing the INH on the nanocomposite surface was demonstrated through the molecular dynamics simulations. To investigate the stability of the polymer, the root-mean-square deviation (RMSD) and the radius of gyration (Rg) were calculated. The composite was characterized by Scanning electron microscopy (SEM) and X-Ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). Mycobacterium tuberculosis was used to assess the antimicrobial activity of the nanoparticles. The drug loading efficiency, drug content, and in-vitro release behavior of the INH-PCL-MNPs were evaluated by UV–Vis spectrophotometry. Results: RMSD of PCL show that the structure of polymer after 40 ns is stable. INH molecules interested to spend more time close to the polymer. Rg of PCL indicated that PCL folded and radius of gyration changed near 1nm. The drug loading efficiency and drug content of the NPs were 720±46 mg/g and 69.3±3.8 (%), respectively. The compound showed a strong level of activity in-vitro. The amount of drug release at all times was above the minimum inhibitory concentration (MIC) (6 μg/ml). Conclusion: INH-PCL-MNP nanocomposite have been effectively used as a potential tool to treat TB infections and a magnetic drug carrier system.


2013 ◽  
Vol 10 (10/11) ◽  
pp. 996 ◽  
Author(s):  
Chiao Hsi Chiang ◽  
Hossein Hosseinkhani ◽  
Wen Sheng Cheng ◽  
g Wei Chen ◽  
Chun Hsiang Wang ◽  
...  

Author(s):  
GEETHA V. S. ◽  
MALARKODI VELRAJ

Objective: To formulate, optimize and evaluate 5-fluorouracil loaded liquorice crude protein nanoparticles for sustained drug delivery using Box-Behnken design. Methods: 5-fluorouracil (5-FU) loaded liquorice crude protein (LCP) nanoparticles were prepared by desolvation method using ethanol-water (1:2 ratio), Tween-80 (2%v/v) as stabilizing agent and gluteraldehyde (8% v/v) as cross linking agent. The optimization of prepared nanoparticles was carried out using Box-Behnken design with 3 factors 2 levels and 3 responses. The independent variables were A)5-FU concentration B)LCP concentration and C) sonication time while the responses were R1) Drug entrapment efficiency R2) Drug loading efficiency and R3) Particle size. The correlation between factors and responses were studied through response surface plots and mathematical equations. The nanoparticles were evaluated for FTIR, physicochemical properties like particle size and zeta potential by Photon correlation spectroscopy (PCS) and surface morphology by TEM. The entrapment efficiency, drug loading efficiency and in vitro drug release studies in PBS pH 7.4 (24 h) were carried out. The observed values were found to be in close agreement with the predicted value obtained from the optimization process. Results: 5-fluorouracil loaded LCP nanoparticles were prepared by desolvation method, the optimization was carried out by Box-Behnken design and the final formulation was evaluated for particle size (301.1 nm), zeta-potential (-25.8mV), PDI(0.226), with entrapment efficiency (64.07%), drug loading efficiency (28.54%), in vitro drug release (65.2% in 24 h) respectively. The formulated nanoparticles show Higuchi model drug release kinetics with sustained drug delivery for 24 h in pH7.4 buffer. Conclusion: The results were proved to be the most valuable for the sustained delivery of 5-Fluorouracil using liquorice crude protein as carrier. 5-FU–LCP nanoparticles were prepared using Tween-80 as stabilizing agent and gluteraldehyde as cross-linking agent to possess ideal sustained drug release characteristics.


2017 ◽  
Vol 156 ◽  
pp. 29-37 ◽  
Author(s):  
Yongpeng Hou ◽  
Chen Yao ◽  
Longbing Ling ◽  
Yawei Du ◽  
Ruiyu He ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document