Control of drug loading efficiency and drug release behavior in preparation of hydrophilic-drug-containing monodisperse PLGA microspheres

2010 ◽  
Vol 21 (5) ◽  
pp. 1563-1571 ◽  
Author(s):  
Fuminori Ito ◽  
Hiroyuki Fujimori ◽  
Hiroyuki Honnami ◽  
Hiroyoshi Kawakami ◽  
Kiyoshi Kanamura ◽  
...  
2018 ◽  
Vol 114 ◽  
pp. 989-997 ◽  
Author(s):  
Gözde Kabay ◽  
Ceylan Demirci ◽  
Gizem Kaleli Can ◽  
Ahmet Ersin Meydan ◽  
Beyhan Günaydin Daşan ◽  
...  

2015 ◽  
Vol 3 (5) ◽  
pp. 814-823 ◽  
Author(s):  
X.-L. Sun ◽  
P.-C. Tsai ◽  
R. Bhat ◽  
E. M. Bonder ◽  
B. Michniak-Kohn ◽  
...  

Residue structure affects the physicochemical properties, drug loading efficiency, and thermoresponsive drug release profiles of block copolymer micelles with pyrrolidone-based polymer cores.


2019 ◽  
Vol 20 (7) ◽  
pp. 1531 ◽  
Author(s):  
Seyed Alavi ◽  
Sitah Muflih Al Harthi ◽  
Hasan Ebrahimi Shahmabadi ◽  
Azim Akbarzadeh

This study aims to improve the cytotoxicity and potency of cisplatin-loaded polybutylcyanoacrylate (PBCA) nanoparticles (NPs) for the treatment of lung cancer through the modulation of temperature and polyethylene glycol (PEG) concentration as effective factors affecting the NPs’ properties. The NPs were synthesized using an anionic polymerization method and were characterized in terms of size, drug loading efficiency, drug release profile, cytotoxicity effects, drug efficacy, and drug side effects. In this regard, dynamic light scattering (DLS), scanning electron microscopy (SEM), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) methods, and hematoxylin and eosin (H&E) staining were used. The results showed that the size and the drug loading efficiency of the synthesized spherical NPs were 355–386 nm and 14–19%, respectively. Also, the drug release profile showed a controlled and slow drug release pattern with approximately 10% drug release over 48 h. In addition, the NPs significantly increased the cytotoxicity of the cisplatin in vitro environment by approximately 2 times and enhanced the therapeutic effects of the drug in vivo environment by increasing the survival time of lung-cancer-bearing mice by 20% compared to the standard drug receiver group. Also, the nanoformulation decreased the drug toxicity in an in vivo environment. According to the results, increasing the temperature and PEG concentration improved the properties of the drug loading efficiency, drug release profile, and cytotoxicity effect of drug-loaded NPs. Consequently, the synthesized formulation increased the survival of tumor-bearing mice and simultaneously decreased the cisplatin toxicity effects. In conclusion, the prepared nanoformulation can be considered a promising candidate for further evaluation for possible therapeutic use in the treatment of lung cancer.


2012 ◽  
Vol 584 ◽  
pp. 460-464 ◽  
Author(s):  
M Gajendiran ◽  
S. Balasubramanian

. A series of biodegradable amphiphilic tri-block copolymers (PLGA–PEG–PLGA) have been derived from the diblock copolymer poly (lactic–co–glycolic acid (PLGA)) and polyethylene glycol (PEG). The mycobacterium tuberculosis (MTB) drug pyrazinamide (PZA) loaded polymer nanoparticles (NPs) have been prepared by probe-sonication followed by w/o/w double emulsification technique. The copolymers have been characterized by FTIR and 1HNMR spectroscopic techniques, TG-DTA analysis, GPC analysis and powder XRD pattern. The MTB drug loaded polymeric NPs have been characterized by FESEM, powder XRD, HRTEM and XPS analysis. The drug loading efficiency, drug content and in vitro drug release studies have been carried out by spectrophotometry. The drug loading efficiency and drug content of triblock copolymeric NPs were higher than these of diblock copolymeric microparticles (MPs). The in vitro drug release studies indicate that the NPs exhibit initial burst release followed by controlled release of PZA for longer durations. The drug release kinetics mechanism has been evaluated by zero order, first order, Korsemeyer-Peppas (KP) and Higuchi models.


2020 ◽  
Vol 26 (4) ◽  
pp. 406-413
Author(s):  
Aram dokht khatibi Khatibi ◽  
Zarrin Eshaghi ◽  
Hamid Mosaddeghi ◽  
Davoud Balarak

Background: This study reports on the development of a controlled-release isoniazid (INH) drug delivery system using poly-є-caprolactone (PCL) functionalized magnetite-nanoparticles (MNPs), as a theoretical potential tool for tuberculosis (TB) chemotherapy. Method: The magnetite Fe3O4 core was fabricated by the co-precipitation method and coated with PCL by emulsion polymerization. INH was loaded onto the PCL-MNP surface to shape an INH-PCL-MNP nanocomposite. Deposing the INH on the nanocomposite surface was demonstrated through the molecular dynamics simulations. To investigate the stability of the polymer, the root-mean-square deviation (RMSD) and the radius of gyration (Rg) were calculated. The composite was characterized by Scanning electron microscopy (SEM) and X-Ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). Mycobacterium tuberculosis was used to assess the antimicrobial activity of the nanoparticles. The drug loading efficiency, drug content, and in-vitro release behavior of the INH-PCL-MNPs were evaluated by UV–Vis spectrophotometry. Results: RMSD of PCL show that the structure of polymer after 40 ns is stable. INH molecules interested to spend more time close to the polymer. Rg of PCL indicated that PCL folded and radius of gyration changed near 1nm. The drug loading efficiency and drug content of the NPs were 720±46 mg/g and 69.3±3.8 (%), respectively. The compound showed a strong level of activity in-vitro. The amount of drug release at all times was above the minimum inhibitory concentration (MIC) (6 μg/ml). Conclusion: INH-PCL-MNP nanocomposite have been effectively used as a potential tool to treat TB infections and a magnetic drug carrier system.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2591
Author(s):  
Thuan Thi Duong ◽  
Antti Isomäki ◽  
Urve Paaver ◽  
Ivo Laidmäe ◽  
Arvo Tõnisoo ◽  
...  

Berberine (BBR) is a poorly water-soluble quaternary isoquinoline alkaloid of plant origin with potential uses in the drug therapy of hypercholesterolemia. To tackle the limitations associated with the oral therapeutic use of BBR (such as a first-pass metabolism and poor absorption), BBR-loaded liposomes were fabricated by ethanol-injection and thin-film hydration methods. The size and size distribution, polydispersity index (PDI), solid-state properties, entrapment efficiency (EE) and in vitro drug release of liposomes were investigated. The BBR-loaded liposomes prepared by ethanol-injection and thin-film hydration methods presented an average liposome size ranging from 50 nm to 244 nm and from 111 nm to 449 nm, respectively. The PDI values for the liposomes were less than 0.3, suggesting a narrow size distribution. The EE of liposomes ranged from 56% to 92%. Poorly water-soluble BBR was found to accumulate in the bi-layered phospholipid membrane of the liposomes prepared by the thin-film hydration method. The BBR-loaded liposomes generated by both nanofabrication methods presented extended drug release behavior in vitro. In conclusion, both ethanol-injection and thin-film hydration nanofabrication methods are feasible for generating BBR-loaded oral liposomes with a uniform size, high EE and modified drug release behavior in vitro.


RSC Advances ◽  
2016 ◽  
Vol 6 (80) ◽  
pp. 76237-76245 ◽  
Author(s):  
M. Sun ◽  
M. Chen ◽  
M. Wang ◽  
J. Hansen ◽  
A. Baatrup ◽  
...  

This pre-clinical study presented a dual function of a doxorubicin-loaded scaffold for both chemotherapeutic agent delivery and bone formation.


2007 ◽  
Vol 1054 ◽  
Author(s):  
Chang Yao ◽  
Thomas J Webster

ABSTRACTThe surface layer of titanium implants, i.e. titanium dioxide, is responsible for the inertness of titanium-based implants within the human body. However, their cytocompatibility properties and long-term efficacy are limited without further surface engineering since the average functional lifetime of an orthopedic implant is only 10 to 15 years. In this study, an electrochemical method known as anodization was used to create titania nanotubular structures on titanium implant surfaces. These nanotubes were about 60 nm wide (inner diameter) and 200 nm deep. In vitro studies found that anodized surfaces consisting of titania nanotube arrays were favored by bone-forming cells (osteoblasts) compared to unanodized surfaces. These titania nano-tubular structures were utilized here as novel drug release delivery systems. It is proposed that the system designed here can have multi-functional drug release to inhibit infection and wound inflammation while increasing new bone formation. For this purpose, antibiotic drugs (penicillin and streptomycin) were loaded into these nanotubular structures by physical adsorption. To mediate interactions between drug molecules and nanotube walls, anodized titanium nanotubes were modified by silanization to possess amine or methyl groups on their surface instead of −OH groups. Results showed increased hydrophobicity of chemically modified titania nanotubes (methyl > amine > hydroxyl terminated surface). These drug loaded substrates were soaked in phosphate buffered solution in a simulated body environment to determine drug release behavior. Buffer solutions were collected and replaced every day. The eluted drug amounts were measured spectroscopically. Results showed more antibiotic penicillin and streptomycin released from chemically modified nanotubes compared to unanodized titanium substrates; specifically, titania anodized nanotubes functionalized with −OH groups did quite well. In this manner, this study advances titanium currently used in orthopedics to possess drug release behavior which can improve orthopedic implant efficacy.


Sign in / Sign up

Export Citation Format

Share Document