scholarly journals How does short implant success rely on cortical bone quality?

Author(s):  
Igor Linetskiy
2020 ◽  
Vol 31 (S20) ◽  
pp. 72-72
Author(s):  
Vitalij Nesvit ◽  
Vladislav Demenko ◽  
Igor Linetskiy ◽  
Abilash Jayakumar ◽  
Oleg Yefremov ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 570
Author(s):  
Masayoshi Yamada ◽  
Chongxiao Chen ◽  
Toshie Sugiyama ◽  
Woo Kyun Kim

Changes in medullary and cortical bone structure with age remain unclear. Twenty Hy-Line W36 hens, 25 or 52 weeks of age, were euthanized, and both tibiae were collected when an egg was present in the magnum. Serial cross sections of the tibiae were stained with Alcian blue. The bones were scanned using micro-computed tomography. Trabecular width (Tb.Wi) was significantly higher (p < 0.05) in 25-week-old hens, whereas medullary bone tissue volume (TV) was significantly higher (p < 0.01) in 52-week-old hens. 25-week-old hens had significantly higher (p < 0.01) bone volume fraction (BVF = calcified tissue / TV). Moreover, the cortical bone parameters were significantly higher (TV and bone mineral content (BMC) at p < 0.05, and bone volume (BV) and BVF at p < 0.01) in younger hens. Open porosity and total porosity, which indicate less density, were significantly higher (p < 0.01) in older hens. Older hens showed significantly higher (p < 0.01) tibial diaphysis TV than younger hens. Younger hens had significantly higher (p < 0.01) BV, BVF and bone mineral density (BMD) of the tibial diaphysis. These findings reveal that reductions in medullary bone quality might be associated with age-related low estrogen levels and stimulation of osteoclastic bone resorption by parathyroid hormone. Cortical bone quality decreased with enlargement of the Haversian canals and loss of volume, with a longer egg-laying period leading to osteoporosis.


2005 ◽  
Vol 24 (2) ◽  
pp. 219-224 ◽  
Author(s):  
Tsuyoshi KITAGAWA ◽  
Yasuhiro TANIMOTO ◽  
Kimiya NEMOTO ◽  
Masahiro AIDA

JBMR Plus ◽  
2018 ◽  
Vol 2 (4) ◽  
pp. 206-216 ◽  
Author(s):  
Hannah M Davis ◽  
Mohammad W Aref ◽  
Alexandra Aguilar-Perez ◽  
Rafael Pacheco-Costa ◽  
Kimberly Allen ◽  
...  

2018 ◽  
Vol 7 (1) ◽  
pp. 105-110 ◽  
Author(s):  
O. Abar ◽  
S. Dharmar ◽  
S. Y. Tang

Objectives Advanced glycation end-products (AGEs) are a post-translational modification of collagen that form spontaneously in the skeletal matrix due to the presence of reducing sugars, such as glucose. The accumulation of AGEs leads to collagen cross-linking, which adversely affects bone quality and has been shown to play a major role in fracture risk. Thus, intervening in the formation and accumulation of AGEs may be a viable means of protecting bone quality. Methods An in vitro model was used to examine the efficacy of two AGE-inhibitors, aminoguanidine (AG) and pyridoxamine (PM), on ageing human cortical bone. Mid-diaphyseal tibial cortical bone segments were obtained from female cadavers (n = 20, age range: 57 years to 97 years) and randomly subjected to one of four treatments: control; glucose only; glucose and AG; or glucose and PM. Following treatment, each specimen underwent mechanical testing under physiological conditions via reference point indentation, and AGEs were quantified by fluorescence. Results Treatment with AG and PM showed a significant decrease in AGE content versus control groups, as well as a significant decrease in the change in indentation distance, a reliable parameter for analyzing bone strength, via two-way analysis of variance (ANOVA) (p < 0.05). Conclusions The data suggest that AG and PM prevent AGE formation and subsequent biomechanical degradation in vitro. Modulation of AGEs may help to identify novel therapeutic targets to mitigate bone quality deterioration, especially deterioration due to ageing and in AGE-susceptible populations (e.g. diabetics). Cite this article: O. Abar, S. Dharmar, S. Y. Tang. The effect of aminoguanidine (AG) and pyridoxamine (PM) on ageing human cortical bone. Bone Joint Res 2018;7:105–110. DOI: 10.1302/2046-3758.71.BJR-2017-0135.R1.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0260924
Author(s):  
Kyong Young Kim ◽  
Kyoung Min Kim

Bone quality is a critical factor that, along with bone quantity, determines bone strength. Image-based parameters are used for assessing bone quality non-invasively. The trabecular bone score (TBS) is used to assess quality of trabecular bone and femur geometry for cortical bone. Little is known about the associations between these two bone quality parameters and whether they show differences in the relationships with age and body mass index (BMI). We investigated the associations between the trabecular bone score (TBS) and femur cortical geometry. Areal bone mineral density (BMD) was assessed using dual energy X-ray absorptiometry (DXA) and the TBS was assessed using iNsight software and, femur geometry using APEX (Hologic). A total of 452 men and 517 women aged 50 years and older with no medical history of a condition affecting bone metabolism were included. Z-scores for TBS and cortical thickness were calculated using the age-specific mean and SD for each parameter. A ‘discrepancy group’ was defined as patients whose absolute Z-score difference between TBS and cortical thickness was > 1 point. TBS and cortical thickness correlated negatively with age both in men and women, but the associations were stronger in women. Regarding the associations with BMI, TBS provided significant negative correlation with BMI in the range of BMI > 25 kg/m2. By contrast, cortical thickness correlated positively with BMI for all BMI ranges. These bone quality-related parameters, TBS and cortical thickness, significantly correlated, but discordance between these two parameters was observed in about one-third of the men and women (32.7% and 33.4%, respectively). Conclusively, image-based bone quality parameters for trabecular and cortical bone exhibit both similarities and differences in terms of their associations with age and BMI. These different profiles in TBS and FN cortical thickness might results in different risk profiles for the vertebral fractures or hip fractures in a certain percentage of people.


Sign in / Sign up

Export Citation Format

Share Document