Energy renormalization coarse-graining of model epoxy resins

Author(s):  
ANDREA GIUNTOLI
2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Andrea Giuntoli ◽  
Nitin K. Hansoge ◽  
Anton van Beek ◽  
Zhaoxu Meng ◽  
Wei Chen ◽  
...  

AbstractA persistent challenge in molecular modeling of thermoset polymers is capturing the effects of chemical composition and degree of crosslinking (DC) on dynamical and mechanical properties with high computational efficiency. We established a coarse-graining (CG) approach combining the energy renormalization method with Gaussian process surrogate models of molecular dynamics simulations. This allows a machine-learning informed functional calibration of DC-dependent CG force field parameters. Taking versatile epoxy resins consisting of Bisphenol A diglycidyl ether combined with curing agent of either 4,4-Diaminodicyclohexylmethane or polyoxypropylene diamines, we demonstrated excellent agreement between all-atom and CG predictions for density, Debye-Waller factor, Young’s modulus, and yield stress at any DC. We further introduced a surrogate model-enabled simplification of the functional forms of 14 non-bonded calibration parameters by quantifying the uncertainty of a candidate set of calibration functions. The framework established provides an efficient methodology for chemistry-specific, large-scale investigations of the dynamics and mechanics of epoxy resins.


2019 ◽  
Vol 5 (4) ◽  
pp. eaav4683 ◽  
Author(s):  
Wenjie Xia ◽  
Nitin K. Hansoge ◽  
Wen-Sheng Xu ◽  
Frederick R. Phelan ◽  
Sinan Keten ◽  
...  

Multiscale coarse-grained (CG) modeling of soft materials, such as polymers, is currently an art form because CG models normally have significantly altered dynamics and thermodynamic properties compared to their atomistic counterparts. We address this problem by exploiting concepts derived from the generalized entropy theory (GET), emphasizing the central role of configurational entropy sc in the dynamics of complex fluids. Our energy renormalization (ER) method involves varying the cohesive interaction strength in the CG models in such a way that dynamic properties related to sc are preserved. We test this ER method by applying it to coarse-graining polymer melts (i.e., polybutadiene, polystyrene, and polycarbonate), representing polymer materials having a relatively low, intermediate, and high degree of glass “fragility”. We find that the ER method allows the dynamics of the atomistic polymer models to be faithfully described to a good approximation by CG models over a wide temperature range.


2018 ◽  
Vol 122 (6) ◽  
pp. 2040-2045 ◽  
Author(s):  
Wenjie Xia ◽  
Jake Song ◽  
Nitin K. Hansoge ◽  
Frederick R. Phelan ◽  
Sinan Keten ◽  
...  

2018 ◽  
Vol 51 (10) ◽  
pp. 3818-3827 ◽  
Author(s):  
Jake Song ◽  
David D. Hsu ◽  
Kenneth R. Shull ◽  
Frederick R. Phelan ◽  
Jack F. Douglas ◽  
...  

2017 ◽  
Vol 50 (21) ◽  
pp. 8787-8796 ◽  
Author(s):  
Wenjie Xia ◽  
Jake Song ◽  
Cheol Jeong ◽  
David D. Hsu ◽  
Frederick R. Phelan ◽  
...  

Author(s):  
J. G. Adams ◽  
M. M. Campbell ◽  
H. Thomas ◽  
J. J. Ghldonl

Since the introduction of epoxy resins as embedding material for electron microscopy, the list of new formulations and variations of widely accepted mixtures has grown rapidly. Described here is a resin system utilizing Maraglas 655, Dow D.E.R. 732, DDSA, and BDMA, which is a variation of the mixtures of Lockwood and Erlandson. In the development of the mixture, the Maraglas and the Dow resins were tested in 3 different volumetric proportions, 6:4, 7:3, and 8:2. Cutting qualities and characteristics of stability in the electron beam and image contrast were evaluated for these epoxy mixtures with anhydride (DDSA) to epoxy ratios of 0.4, 0.55, and 0.7. Each mixture was polymerized overnight at 60°C with 2% and 3% BDMA.Although the differences among the test resins were slight in terms of cutting ease, general tissue preservation, and stability in the beam, the 7:3 Maraglas to D.E.R. 732 ratio at an anhydride to epoxy ratio of 0.55 polymerized with 3% BDMA proved to be most consistent. The resulting plastic is relatively hard and somewhat brittle which necessitates trimming and facing the block slowly and cautiously to avoid chipping. Sections up to about 2 microns in thickness can be cut and stained with any of several light microscope stains and excellent quality light photomicrographs can be taken of such sections (Fig. 1).


Author(s):  
K. Chien ◽  
R.L. Van de Velde ◽  
R.C. Heusser

Sectioning quality of epoxy resins can be improved by the addition of a 1% silicone 200 fluid (Dow Corning), however this produces a softer block. To compensate, a harder plastic has been used for embedding various tissues encountered in our pathology laboratory. Exact amounts of the plastic mixture can be directly made up for embedding as shown: The chart reveals a Poly/Bed 812 (WPE 145) to anhydride ratio of 1:0.7 and a NMA to DDSA ratio of 7:3. 1% silicone fluid is added to above mixtures.Due to impurities within the DDSA and NMA, the polymerized epoxy blocks vary in darkness and appear to affect sectioning quality. After discussing this problem with Polysciences Inc., they have agreed to purify their anhydrides in an effort to standardize the consistency of the plastic.


Sign in / Sign up

Export Citation Format

Share Document