scholarly journals Energy renormalization for coarse-graining polymers having different segmental structures

2019 ◽  
Vol 5 (4) ◽  
pp. eaav4683 ◽  
Author(s):  
Wenjie Xia ◽  
Nitin K. Hansoge ◽  
Wen-Sheng Xu ◽  
Frederick R. Phelan ◽  
Sinan Keten ◽  
...  

Multiscale coarse-grained (CG) modeling of soft materials, such as polymers, is currently an art form because CG models normally have significantly altered dynamics and thermodynamic properties compared to their atomistic counterparts. We address this problem by exploiting concepts derived from the generalized entropy theory (GET), emphasizing the central role of configurational entropy sc in the dynamics of complex fluids. Our energy renormalization (ER) method involves varying the cohesive interaction strength in the CG models in such a way that dynamic properties related to sc are preserved. We test this ER method by applying it to coarse-graining polymer melts (i.e., polybutadiene, polystyrene, and polycarbonate), representing polymer materials having a relatively low, intermediate, and high degree of glass “fragility”. We find that the ER method allows the dynamics of the atomistic polymer models to be faithfully described to a good approximation by CG models over a wide temperature range.

2019 ◽  
Vol 33 (01) ◽  
pp. 1850421 ◽  
Author(s):  
Lang Zeng ◽  
Zhen Jia ◽  
Yingying Wang

Coarse-graining of complex networks is one of the important algorithms to study large-scale networks, which is committed to reducing the size of networks while preserving some topological information or dynamic properties of the original networks. Spectral coarse-graining (SCG) is one of the typical coarse-graining algorithms, which can keep the synchronization ability of the original network well. However, the calculation of SCG is large, which limits its real-world applications. And it is difficult to accurately control the scale of the coarse-grained network. In this paper, a new SCG algorithm based on K-means clustering (KCSCG) is proposed, which cannot only reduce the amount of calculation, but also accurately control the size of coarse-grained network. At the same time, KCSCG algorithm has better effect in keeping the network synchronization ability than SCG algorithm. A large number of numerical simulations and Kuramoto-model example on several typical networks verify the feasibility and effectiveness of the proposed algorithm.


2019 ◽  
Vol 30 (11) ◽  
pp. 1950081
Author(s):  
Lang Zeng ◽  
Zhen Jia ◽  
Yingying Wang

Coarse-graining of complex networks is a hot topic in network science. Coarse-grained networks are required to preserve the topological information or dynamic properties of the original network. Some effective coarse-graining methods have been proposed, while an urgent problem is how to obtain coarse-grained network with optimal scale. In this paper, we propose an extraction algorithm (EA) for optimal coarse-grained networks. Numerical simulation for EA on four kinds of networks and performing Kuramoto model on optimal coarse-grained networks, we find our algorithm can effectively obtain the optimal coarse-grained network.


Soft Matter ◽  
2019 ◽  
Vol 15 (38) ◽  
pp. 7567-7582 ◽  
Author(s):  
Shu Wang ◽  
Zhen Li ◽  
Wenxiao Pan

We present a bottom-up coarse-graining (CG) method to establish implicit-solvent CG modeling for polymers in solution, which conserves the dynamic properties of the reference microscopic system.


Soft Matter ◽  
2021 ◽  
Author(s):  
Zhan Ma ◽  
Shu Wang ◽  
Minhee Kim ◽  
Kaibo Liu ◽  
Chun-Long Chen ◽  
...  

The present work concerns the transferability of coarse-grained (CG) modeling in reproducing the dynamic properties of the reference atomistic systems across a range of parameters. In particular, we focus on...


Nanomaterials ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1479 ◽  
Author(s):  
Ke Duan ◽  
Li Li ◽  
Fei Wang ◽  
Weishuang Meng ◽  
Yujin Hu ◽  
...  

Interface interactions play a crucial role in determining the thermomechanical properties of carbon nanotubes (CNTs)/polymer nanocomposites. They are, however, poorly treated in the current multi-scale coarse-grained (CG) models. To develop suitable CG models of CNTs/polymer nanocomposites, we demonstrate the importance of two aspects for the first time, that is, preserving the interfacial cohesive energy and reproducing the interface load transfer behavior of all-atomistic (AA) systems. Our simulation results indicate that, for CNTs/polymer nanocomposites, the interface cohesive energy and the interface load transfer of CG models are generally inconsistent with their AA counterparts, revealing significant deviations in their predicted mechanical properties. Fortunately, such inconsistency can be “corrected” by phenomenologically adjusting the cohesive interaction strength parameter of the interface LJ potentials in conjunction with choosing a reasonable degree of coarse-graining of incorporated CNTs. We believe that the problem studied here is general for the development of the CG models of nanocomposites, and the proposed strategy used in present work may be applied to polymer nanocomposites reinforced by other nanofillers.


2015 ◽  
Vol 112 (10) ◽  
pp. 2966-2971 ◽  
Author(s):  
Beatriz A. Pazmiño Betancourt ◽  
Paul Z. Hanakata ◽  
Francis W. Starr ◽  
Jack F. Douglas

The study of glass formation is largely framed by semiempirical models that emphasize the importance of progressively growing cooperative motion accompanying the drop in fluid configurational entropy, emergent elasticity, or the vanishing of accessible free volume available for molecular motion in cooled liquids. We investigate the extent to which these descriptions are related through computations on a model coarse-grained polymer melt, with and without nanoparticle additives, and for supported polymer films with smooth or rough surfaces, allowing for substantial variation of the glass transition temperature and the fragility of glass formation. We find quantitative relations between emergent elasticity, the average local volume accessible for particle motion, and the growth of collective motion in cooled liquids. Surprisingly, we find that each of these models of glass formation can equally well describe the relaxation data for all of the systems that we simulate. In this way, we uncover some unity in our understanding of glass-forming materials from perspectives formerly considered as distinct.


2021 ◽  
Author(s):  
Nicholas Jackson ◽  
Ganesh Sivaraman

Scalable electronic predictions are critical for soft materials design. Recently, the Electronic Coarse-Graining (ECG) method was introduced to renormalize all-atom quantum chemical (QC) predictions to coarse-grained (CG) molecular representations using deep neural networks (DNN). While DNN can learn complex representations that prove challenging for traditional kernel-based methods, they are susceptible to overfitting and the overconfidence of uncertainty estimations. Here, we develop ECG within the GPU-accelerated Deep Kernel Learning (DKL) framework to enable CG QC predictions of a conjugated oligomer using range-separated hybrid density functional theory. DKL-ECG provides accurate reproduction of QC electronic properties in conjunction with prediction uncertainties that facilitate efficient training over multiple temperature data sets via active learning. We show that while active learning algorithms enable efficient sampling of a more diverse configurational space relative to random sampling, the predictive accuracy of DKL-ECG models is effectively identical across all active learning methodologies employed. We attribute this result to the low conformational barriers of our test molecule and the redundant sampling of configurations induced by Boltzmann sampling, even for distinct temperature ensembles.


Gels ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 102
Author(s):  
Ferenc Horkay

The objective of this article is to introduce the readers to the field of polyelectrolyte gels. These materials are common in living systems and have great importance in many biomedical and industrial applications. In the first part of this paper, we briefly review some characteristic properties of polymer gels with an emphasis on the unique features of this type of soft material. Unsolved problems and possible future research directions are highlighted. In the second part, we focus on the typical behavior of polyelectrolyte gels. Many biological materials (e.g., tissues) are charged (mainly anionic) polyelectrolyte gels. Examples are shown to illustrate the effect of counter-ions on the osmotic swelling behavior and the kinetics of the swelling of model polyelectrolyte gels. These systems exhibit a volume transition as the concentration of higher valence counter-ions is gradually increased in the equilibrium bath. A hierarchy is established in the interaction strength between the cations and charged polymer molecules according to the chemical group to which the ions belong. The swelling kinetics of sodium polyacrylate hydrogels is investigated in NaCl solutions and in solutions containing both NaCl and CaCl2. In the presence of higher valence counter-ions, the swelling/shrinking behavior of these gels is governed by the diffusion of free ions in the swollen network, the ion exchange process and the coexistence of swollen and collapsed states.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1512
Author(s):  
Baris Demir ◽  
Gabriel Perli ◽  
Kit-ying Chan ◽  
Jannick Duchet-Rumeau ◽  
Sébastien Livi

Recently, a new generation of polymerised ionic liquids with high thermal stability and good mechanical performances has been designed through novel and versatile cycloaliphatic epoxy-functionalised ionic liquids (CEILs). From these first promising results and unexplored chemical structures in terms of final properties of the PILs, a computational approach based on molecular dynamics simulations has been developed to generate polymer models and predict the thermo–mechanical properties (e.g., glass transition temperature and Young’s modulus) of experimentally investigated CEILs for producing multi-functional polymer materials. Here, a completely reproducible and reliable computational protocol is provided to design, test and tune poly(ionic liquids) based on epoxidised ionic liquid monomers for future multi-functional thermoset polymers.


Sign in / Sign up

Export Citation Format

Share Document