scholarly journals A targeted metabolomic approach to assess the reproducibility of plasma metabolites over a four-month period

Author(s):  
Xiaofei Yin
Nutrients ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1032 ◽  
Author(s):  
Christopher Papandreou ◽  
Pablo Hernández-Alonso ◽  
Mònica Bulló ◽  
Miguel Ruiz-Canela ◽  
Edward Yu ◽  
...  

Few studies have examined the association of a wide range of metabolites with total and subtypes of coffee consumption. The aim of this study was to investigate associations of plasma metabolites with total, caffeinated, and decaffeinated coffee consumption. We also assessed the ability of metabolites to discriminate between coffee consumption categories. This is a cross-sectional analysis of 1664 participants from the PREDIMED study. Metabolites were semiquantitatively profiled using a multiplatform approach. Consumption of total coffee, caffeinated coffee and decaffeinated coffee was assessed by using a validated food frequency questionnaire. We assessed associations between 387 metabolite levels with total, caffeinated, or decaffeinated coffee consumption (≥50 mL coffee/day) using elastic net regression analysis. Ten-fold cross-validation analyses were used to estimate the discriminative accuracy of metabolites for total and subtypes of coffee. We identified different sets of metabolites associated with total coffee, caffeinated and decaffeinated coffee consumption. These metabolites consisted of lipid species (e.g., sphingomyelin, phosphatidylethanolamine, and phosphatidylcholine) or were derived from glycolysis (alpha-glycerophosphate) and polyphenol metabolism (hippurate). Other metabolites included caffeine, 5-acetylamino-6-amino-3-methyluracil, cotinine, kynurenic acid, glycocholate, lactate, and allantoin. The area under the curve (AUC) was 0.60 (95% CI 0.56–0.64), 0.78 (95% CI 0.75–0.81) and 0.52 (95% CI 0.49–0.55), in the multimetabolite model, for total, caffeinated, and decaffeinated coffee consumption, respectively. Our comprehensive metabolic analysis did not result in a new, reliable potential set of metabolites for coffee consumption.


Planta Medica ◽  
2013 ◽  
Vol 79 (13) ◽  
Author(s):  
J Michl ◽  
G Kite ◽  
M Simmonds ◽  
M Ingrouille ◽  
M Heinrich

Planta Medica ◽  
2015 ◽  
Vol 81 (11) ◽  
Author(s):  
A Wadeng ◽  
A Plubrukarn
Keyword(s):  

2020 ◽  
Vol 51 (4) ◽  
pp. 1689-1699
Author(s):  
Sedigheh Babaei ◽  
Abdolmohammad Abedian-Kenari ◽  
Mahmood Naseri ◽  
Mohammad Ali Yazdani-Sadati ◽  
Isidoro Metón

Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 414
Author(s):  
Didem Kart ◽  
Tuba Reçber ◽  
Emirhan Nemutlu ◽  
Meral Sagiroglu

Introduction: Alternative anti-biofilm agents are needed to combat Pseudomonas aeruginosa infections. The mechanisms behind these new agents also need to be revealed at a molecular level. Materials and methods: The anti-biofilm effects of 10 plant-derived compounds on P. aeruginosa biofilms were investigated using minimum biofilm eradication concentration (MBEC) and virulence assays. The effects of ciprofloxacin and compound combinations on P. aeruginosa in mono and triple biofilms were compared. A metabolomic approach and qRT-PCR were applied to the biofilms treated with ciprofloxacin in combination with baicalein, esculin hydrate, curcumin, and cinnamaldehyde at sub-minimal biofilm inhibitory concentration (MBIC) concentrations to highlight the specific metabolic shifts between the biofilms and to determine the quorum sensing gene expressions, respectively. Results: The combinations of ciprofloxacin with curcumin, baicalein, esculetin, and cinnamaldehyde showed more reduced MBICs than ciprofloxacin alone. The quorum sensing genes were downregulated in the presence of curcumin and cinnamaldehyde, while upregulated in the presence of baicalein and esculin hydrate rather than for ciprofloxacin alone. The combinations exhibited different killing effects on P. aeruginosa in mono and triple biofilms without affecting its virulence. The findings of the decreased metabolite levels related to pyrimidine and lipopolysaccharide synthesis and to down-regulated alginate and lasI expressions strongly indicate the role of multifactorial mechanisms for curcumin-mediated P. aeruginosa growth inhibition. Conclusions: The use of curcumin, baicalein, esculetin, and cinnamaldehyde with ciprofloxacin will help fight against P. aeruginosa biofilms. To the best of our knowledge, this is the first study of its kind to define the effect of plant-based compounds as possible anti-biofilm agents with low MBICs for the treatment of P. aeruginosa biofilms through metabolomic pathways.


Sign in / Sign up

Export Citation Format

Share Document