scholarly journals Proposed Digital Evidence Sharing and Preserving Mechanism in Cloud Computing Environments: اقتراح آلية لتبادل الأدلة الرقمية والحفاظ عليها في بيئات الحوسبة السحابية

Author(s):  
Waseem Mohammad Maamoun Al-Sbaiti, Maher Abdulrahman Abbas,  Waseem Mohammad Maamoun Al-Sbaiti, Maher Abdulrahman Abbas, 

Investigations and digital evidence have become an important and critical discipline that has made many researchers devote vigorous efforts to developing digital surveillance and investigation mechanisms, especially after the great expansion of the technical infrastructure on cloud computing platforms, which added more challenges to digital investigation. So far, no robust model has been found for preserving and exchanging digital evidence between clouds and users without this model causing a breach of user privacy or affecting performance. Most of the current studies on digital evidence exchange mechanisms rely at one stage of the exchange or evidence formation process on the CSP, which allows the cloud provider (or a malicious employee within the cloud provider) to manipulate the evidence or data. This research will present a proposal for a mechanism for sharing and preserving digital evidence between the cloud parties, taking into account the performance in the major cloud computing models (IaaS, PaaS, SaaS), and how this model can achieve evidence integrity and a less level of interference in the privacy of the user as well as the cloud service provider considering that may be more than one party accused as forgery. To achieve this, we have selected some digital evidence that digital investigators can rely on as digital forensic evidence in cases related to information crimes as a sample that can be exchanged and verified that none of them has tampered with this evidence, especially since cloud environments may go beyond having a single cloud that performs the service and thus there are several clouds involved in forming evidence, then we tested this mechanism by applying the SHA-2 Hashing process to digital evidence, then encrypting the output with the Elliptic Curve Cryptography algorithm and measuring the time needed to exchange and verify the evidence. We will compare the proposed model with models in previous studies to illustrate how the proposed model overcame the problem of relying on one party to form the evidence with the least impact for all parties on the level of performance or privacy, and how distributed SHA-2 hashing values proved its effectiveness in the inability of any party to deny the evidence or tamer it.

2021 ◽  
Vol 40 (2) ◽  
pp. 308-320
Author(s):  
S.A. Akinboro ◽  
U.J. Asanga ◽  
M.O. Abass

Data stored in the cloud are susceptible to an array of threats from hackers. This is because threats, hackers and unauthorized access are not supported by the cloud service providers as implied. This study improves user privacy in the cloud system, using privacy with non-trusted provider (PNTP) on software and platform as a service model. The subscribers encrypt the data using user’s personal Advanced Encryption Standard (AES) symmetric key algorithm and send the encrypted data to the storage pool of the Cloud Service Provider (CSP) via a secure socket layer. The AES performs a second encryption on the data sent to the cloud and generates for the subscriber a key that will be used for decryption of previously stored data. The encryption and decryption keys are managed by the key server and have been hardcoded into the PNTP system. The model was simulated using the Stanford University multimedia dataset and benchmarked with a Privacy with Trusted cloud Provider (PTP) model using encryption time, decryption time and efficiency (brute force hacking) as parameters. Results showed that it took a longer time to access the user files in PNTP than in the PTP system. The brute force hacking took a longer time (almost double) to access data stored on the PNTP system. This will give subscribers a high level of control over their data and increase the adoption of cloud computing by businesses and organizations with highly sensitive information.


2021 ◽  
Vol 11 (3) ◽  
pp. 19-32
Author(s):  
Shahin Fatima ◽  
Shish Ahmad

Cloud computing has become a feasible solution for virtualization of cloud resources. Although it has many prospective to hold individuals by providing many benefits to organizations, still there are security loopholes to outsource data. To ensure the ‘security' of data in cloud computing, quantum key cryptography is introduced. Quantum cryptography makes use of quantum mechanics and qubits. The proposed method made use of quantum key distribution with Kerberos to secure the data on the cloud. The paper discussed the model for quantum key distribution which makes use of Kerberos ticket distribution center for authentication of cloud service providers. The proposed model is compared with quantum key distribution and provides faster computation by producing less error rate.


2013 ◽  
pp. 814-834
Author(s):  
Hassan Takabi ◽  
James B.D. Joshi

Cloud computing paradigm is still an evolving paradigm but has recently gained tremendous momentum due to its potential for significant cost reduction and increased operating efficiencies in computing. However, its unique aspects exacerbate security and privacy challenges that pose as the key roadblock to its fast adoption. Cloud computing has already become very popular, and practitioners need to provide security mechanisms to ensure its secure adoption. In this chapter, the authors discuss access control systems and policy management in cloud computing environments. The cloud computing environments may not allow use of a single access control system, single policy language, or single management tool for the various cloud services that it offers. Currently, users must use diverse access control solutions available for each cloud service provider to secure data. Access control policies may be composed in incompatible ways because of diverse policy languages that are maintained separately at every cloud provider. Heterogeneity and distribution of these policies pose problems in managing access policy rules for a cloud environment. In this chapter, the authors discuss challenges of policy management and introduce a cloud based policy management framework that is designed to give users a unified control point for managing access policies to control access to their resources no matter where they are stored.


Author(s):  
Marko Vulić ◽  
Pavle Petrović ◽  
Ivanka Kovačević ◽  
Vanjica Ratković Živanović

A new vision of higher education systems, in which the student is the central subject of the teaching process, opens up new learning opportunities that include customization of teaching methods to the students’ needs, and new modes of communication both between teachers and students and among students themselves. The main subject of this chapter is the implementation and improvement of the Student Relationship Management (SRM) concept as a cloud service in an e-education system by using social media. The experimental part of the chapter presents the design and implementation of an e-education model based on cloud computing. The proposed model is implemented at the Faculty of Organizational Sciences, University of Belgrade, by using the existing cloud computing infrastructure of the Laboratory for E-Business.


2020 ◽  
Vol 63 (6) ◽  
pp. 927-941 ◽  
Author(s):  
A A Periola ◽  
A A Alonge ◽  
K A Ogudo

Abstract The Ocean provides benefits of free cooling for cloud computing platforms. However, the use of the ocean for hosting cloud platforms needs to consider three challenges. The first challenge is identifying suitable underwater locations for siting underwater data centres. The second is designing a low-cost method for acquiring underwater data centres. The third is designing a mechanism ensuring that the use of the ocean for hosting data centres is scalable. This paper proposes the intelligent marine compute locator (IMCL) to identify suitable locations for siting underwater data centres. The proposed IMCL determines the specific heat capacity of different ocean locations at multiple epochs. In addition, the conversion of end-of-life vessels into artificial reefs that host open-source disaggregated hardware computing payload is proposed to reduce acquisition costs. The use of disaggregated architecture enables multiple cloud service providers to use limited ocean locations. The formulated metrics are the power usage effectiveness (PUE) and ocean space utilization (OSU). Simulations show that the use of disaggregated design architecture instead of non-disaggregated architecture (existing mechanism) enhances the PUE and OSU by 4.4 and 16.4% on average, respectively.


Author(s):  
Paramjeet Kaur

Cloud computing is a new computing model which is widely emerging technology in the recent years is adopted by most of the IT companies and other organizations. Cloud computing enables individuals and organizations to gain access to huge computing resources without capital investment. Cloud computing is a set of IT services that are provided to a customer over a network on a leased basis and with the ability to scale up or down their service requirements. Cloud computing is the internet depend technology which is providing the services to user, small and large organization on demand. Cloud computing stored the user data and maintain in the data canter of cloud provider like Amazon, Oracle, Google, Microsoft etc. However, the cloud environment is considered untrusted as it is accessed through Internet. Therefore people have security concerns on data stored in cloud environment. The major concern of cloud environment is security during upload the data on cloud server.


2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Nicolas Malm ◽  
Kalle Ruttik ◽  
Olav Tirkkonen

Cloud computing provides benefits in terms of equipment consolidation and power savings from higher utilization for virtualizable software. Cellular communication software faces challenges in cloud computing platforms. BSs create a specific load profile that differs from traditional cloud service loads. Cellular communication system implementations have real-time deadlines with fixed, periodic latency requirements. In this paper, we assess the suitability of an unmodified Ubuntu Linux OS running on a commodity server to operate latency-critical software using a 4G LTE BS software-defined radio implementation. Scaling of the CPU clock frequency is shown to be feasible without excessive impact on the platform’s ability to meet the 4 ms processing delay requirement imposed by the LTE standard. Measurements show the relationship between the processor’s operating frequency and the number of missed subframe processing deadlines to be nonlinear. The results obtained also indicate that a high computational capacity does not suffice to ensure satisfactory operation since fronthaul processing overhead can limit achievable performance. Use of offload-capable network interface cards is studied as a potential remedy.


Author(s):  
Evgeny Yurievich Denisov ◽  
Irina Aleksandrovna Kalugina

Modern realistic computer graphics applications, such as physically accurate lighting simulation systems, require a lot of computer power for images generation. Usage of the resources of cloud computing platforms for such calculations allows to avoid additional expenses for purchase and maintenance of own computer farms. However often such simulation systems use OpenGL for 3D images display, for example during scene preparation and modification. Since cloud-based virtual machines had only software (that is, slow) OpenGL display support, it was not convenient for the users to work with their habitual computer graphics applications in such environments, and typical workflow was to prepare all data on local computer and then execute simulation in the cloud service (usually using distributed processing). Recently several cloud computer service providers started to suggest users the option of hardware (GPU-based) OpenGL support in their cloud virtual machines. This article is devoted to the investigation of hardware OpenGL display options, suggested by various providers of cloud computing services, and their comparison. Available types of hardware GPU were checked and compared, along with the conditions for their usage.


Author(s):  
Shantanu Pal

In a cloud ecosystem, most of the data and software that users use reside on the remote server(s), which brings some new challenges for the system, especially security and privacy. At present, these security threats and attacks are the greatest concern for the service providers towards delivering a more secure cloud infrastructure. One of the major concerns is data security, implemented by the most effective means possible and the protection of stored data from unauthorized users and hackers. When considering these security issues, trust is one of the most important means to improve the system’s security and enable interoperability of current heterogeneous cloud computing platforms. The objective of this chapter is to discuss and understand the basic security and privacy challenges of a cloud computing environment as the security of cloud computing is the greatest challenge for delivering a safer cloud environment for both the service providers and the service customers. With this in mind, this chapter will introduce the risks and possible attacks in a cloud computing environment. The major goal is to specify the security risks and attacks and consider trust of cloud service users for delivering a safer and innovation business model.


2019 ◽  
pp. 574-591
Author(s):  
Anas M.R. Alsobeh ◽  
Aws Abed Al Raheem Magableh ◽  
Emad M. AlSukhni

Cloud computing technology has opened an avenue to meet the critical need to securely share distributed resources and web services, and especially those that belong to clients who have sensitive data and applications. However, implementing crosscutting concerns for cloud-based applications is a challenge. This challenge stems from the nature of distributed Web-based technology architecture and infrastructure. One of the key concerns is security logic, which is scattered and tangled across all the cloud service layers. In addition, maintenance and modification of the security aspect is a difficult task. Therefore, cloud services need to be extended by enriching them with features to support adaptation so that these services can become better structured and less complex. Aspect-oriented programming is the right technical solution for this problem as it enables the required separation when implementing security features without the need to change the core code of the server or client in the cloud. Therefore, this article proposes a Runtime Reusable Weaving Model for weaving security-related crosscutting concerns through layers of cloud computing architecture. The proposed model does not require access to the source code of a cloud service and this can make it easier for the client to reuse the needed security-related crosscutting concerns. The proposed model is implemented using aspect orientation techniques to integrate cloud security solutions at the software-as-a-service layer.


Sign in / Sign up

Export Citation Format

Share Document