scholarly journals PEMBENTUKAN CLUSTER OPTIMUM BERDASARKAN METODE HIERARKI DIVISIVE

Author(s):  
Lidia Karnelia, Dadan Kusnandar, Shantika Martha
Keyword(s):  

Analisis cluster merupakan teknik multivariat yang mempunyai tujuan untuk mengelompokkan objek-objek berdasarkan karakteristik yang dimiliki. Prosedur pengelompokan yang digunakan dalam analisis cluster yaitu metode hierarki dan non hierarki. Metode hierarki terdiri dari divisive dan alggomerative. Pembentukan jumlah cluster optimum yang tepat untuk digunakan diperoleh melalui identifikasi pola pergerakan varians pada cluster yang mencapai global optimum. Penemuan posisi cluster yang mencapai global optimum pada pola pergerakan varians diperoleh melalui penerapan metode valley-tracing. Pada penelitian, digunakan penerapan  analisis cluster hierarki divisive untuk  mengelompokkan 13 desa di Kecamatan Nanga Taman berdasarkan kelompok pendidikan yang ditamatkan tahun 2019. Dari hasil analisis pembentukan cluster optimum  pada metode hierarki divisive, diperoleh  sebanyak empat cluster. Informasi tersebut akan mempermudah pemerintah Kecamatan Nanga Taman dalam menanggulangi permasalahan  pendidikan karena tidak meratanya jumlah penduduk berdasarkan kelompok pendidikan yang ditamatkan. Anggota cluster pertama Desa Nanga Taman  tidak memiliki kemiripan dengan desa lainnya, karena  jumlah penduduk tamatan sarjana, diploma dan SMA terbanyak. Anggota cluster kedua Desa Nanga Mentukak dan Sungai Lawak, memiliki kemiripan berdasarkan jumlah penduduk tamatan diploma dan pada kelompok pendidikan lainnya tidak jauh berbeda. Anggota cluster ketiga Desa Nanga Koman dan Lubuk Tajau, memiliki kemiripan berdasarkan jumlah penduduk tamatan sarjana dan pada kelompok pendidikan lainnya tidak jauh berbeda. Anggota cluster keempat Desa Rirang Jati, Senangak, Nanga Kiungkang, Tapang Tingang, Nanga Mongko, Nanga Engkulun, Pantok dan Meragun, memiliki kemiripan berdasarkan kelompok pendidikan tidak/belum tamat SD dan tamatan SD.  Kata Kunci : Analisis Multivariat, Pendidikan, Global Optimum, Valley-Tracing.

2021 ◽  
Vol 16 (2) ◽  
pp. 1-34
Author(s):  
Rediet Abebe ◽  
T.-H. HUBERT Chan ◽  
Jon Kleinberg ◽  
Zhibin Liang ◽  
David Parkes ◽  
...  

A long line of work in social psychology has studied variations in people’s susceptibility to persuasion—the extent to which they are willing to modify their opinions on a topic. This body of literature suggests an interesting perspective on theoretical models of opinion formation by interacting parties in a network: in addition to considering interventions that directly modify people’s intrinsic opinions, it is also natural to consider interventions that modify people’s susceptibility to persuasion. In this work, motivated by this fact, we propose an influence optimization problem. Specifically, we adopt a popular model for social opinion dynamics, where each agent has some fixed innate opinion, and a resistance that measures the importance it places on its innate opinion; agents influence one another’s opinions through an iterative process. Under certain conditions, this iterative process converges to some equilibrium opinion vector. For the unbudgeted variant of the problem, the goal is to modify the resistance of any number of agents (within some given range) such that the sum of the equilibrium opinions is minimized; for the budgeted variant, in addition the algorithm is given upfront a restriction on the number of agents whose resistance may be modified. We prove that the objective function is in general non-convex. Hence, formulating the problem as a convex program as in an early version of this work (Abebe et al., KDD’18) might have potential correctness issues. We instead analyze the structure of the objective function, and show that any local optimum is also a global optimum, which is somehow surprising as the objective function might not be convex. Furthermore, we combine the iterative process and the local search paradigm to design very efficient algorithms that can solve the unbudgeted variant of the problem optimally on large-scale graphs containing millions of nodes. Finally, we propose and evaluate experimentally a family of heuristics for the budgeted variant of the problem.


2020 ◽  
Author(s):  
Alberto Bemporad ◽  
Dario Piga

AbstractThis paper proposes a method for solving optimization problems in which the decision-maker cannot evaluate the objective function, but rather can only express a preference such as “this is better than that” between two candidate decision vectors. The algorithm described in this paper aims at reaching the global optimizer by iteratively proposing the decision maker a new comparison to make, based on actively learning a surrogate of the latent (unknown and perhaps unquantifiable) objective function from past sampled decision vectors and pairwise preferences. A radial-basis function surrogate is fit via linear or quadratic programming, satisfying if possible the preferences expressed by the decision maker on existing samples. The surrogate is used to propose a new sample of the decision vector for comparison with the current best candidate based on two possible criteria: minimize a combination of the surrogate and an inverse weighting distance function to balance between exploitation of the surrogate and exploration of the decision space, or maximize a function related to the probability that the new candidate will be preferred. Compared to active preference learning based on Bayesian optimization, we show that our approach is competitive in that, within the same number of comparisons, it usually approaches the global optimum more closely and is computationally lighter. Applications of the proposed algorithm to solve a set of benchmark global optimization problems, for multi-objective optimization, and for optimal tuning of a cost-sensitive neural network classifier for object recognition from images are described in the paper. MATLAB and a Python implementations of the algorithms described in the paper are available at http://cse.lab.imtlucca.it/~bemporad/glis.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 955
Author(s):  
Zhiyuan Li ◽  
Ershuai Peng

With the development of smart vehicles and various vehicular applications, Vehicular Edge Computing (VEC) paradigm has attracted from academic and industry. Compared with the cloud computing platform, VEC has several new features, such as the higher network bandwidth and the lower transmission delay. Recently, vehicular computation-intensive task offloading has become a new research field for the vehicular edge computing networks. However, dynamic network topology and the bursty computation tasks offloading, which causes to the computation load unbalancing for the VEC networking. To solve this issue, this paper proposed an optimal control-based computing task scheduling algorithm. Then, we introduce software defined networking/OpenFlow framework to build a software-defined vehicular edge networking structure. The proposed algorithm can obtain global optimum results and achieve the load-balancing by the virtue of the global load status information. Besides, the proposed algorithm has strong adaptiveness in dynamic network environments by automatic parameter tuning. Experimental results show that the proposed algorithm can effectively improve the utilization of computation resources and meet the requirements of computation and transmission delay for various vehicular tasks.


Author(s):  
Yinpeng Qu ◽  
Chen Ching Liu ◽  
Jian Xu ◽  
Yuanzhang Sun ◽  
Siyang Liao ◽  
...  

Author(s):  
Guangyu Zhou ◽  
Aijia Ouyang ◽  
Yuming Xu

To overcome the shortcomings of the basic glowworm swarm optimization (GSO) algorithm, such as low accuracy, slow convergence speed and easy to fall into local minima, chaos algorithm and cloud model algorithm are introduced to optimize the evolution mechanism of GSO, and a chaos GSO algorithm based on cloud model (CMCGSO) is proposed in the paper. The simulation results of benchmark function of global optimization show that the CMCGSO algorithm performs better than the cuckoo search (CS), invasive weed optimization (IWO), hybrid particle swarm optimization (HPSO), and chaos glowworm swarm optimization (CGSO) algorithm, and CMCGSO has the advantages of high accuracy, fast convergence speed and strong robustness to find the global optimum. Finally, the CMCGSO algorithm is used to solve the problem of face recognition, and the results are better than the methods from literatures.


2012 ◽  
Vol 2012 ◽  
pp. 1-24 ◽  
Author(s):  
Erik Cuevas ◽  
Mauricio González ◽  
Daniel Zaldivar ◽  
Marco Pérez-Cisneros ◽  
Guillermo García

A metaheuristic algorithm for global optimization called the collective animal behavior (CAB) is introduced. Animal groups, such as schools of fish, flocks of birds, swarms of locusts, and herds of wildebeest, exhibit a variety of behaviors including swarming about a food source, milling around a central locations, or migrating over large distances in aligned groups. These collective behaviors are often advantageous to groups, allowing them to increase their harvesting efficiency, to follow better migration routes, to improve their aerodynamic, and to avoid predation. In the proposed algorithm, the searcher agents emulate a group of animals which interact with each other based on the biological laws of collective motion. The proposed method has been compared to other well-known optimization algorithms. The results show good performance of the proposed method when searching for a global optimum of several benchmark functions.


Author(s):  
Yann Poirette ◽  
Martin Guiton ◽  
Guillaume Huwart ◽  
Delphine Sinoquet ◽  
Jean Marc Leroy

IFP Energies nouvelles (IFPEN) is involved for many years in various projects for the development of floating offshore wind turbines. The commercial deployment of such technologies is planned for 2020. The present paper proposes a methodology for the numerical optimization of the inter array cable configuration. To illustrate the potential of such an optimization, results are presented for a case study with a specific floating foundation concept [1]. The optimization study performed aims to define the least expensive configuration satisfying mechanical constraints under extreme environmental conditions. The parameters to be optimized are the total length, the armoring, the stiffener geometry and the buoyancy modules. The insulated electrical conductors and overall sheath are not concerned by this optimization. The simulations are carried out using DeepLines™, a Finite Element software dedicated to simulate offshore floating structures in their marine environment. The optimization problem is solved using an IFPEN in-house tool, which integrates a state of the art derivative-free trust region optimization method extended to nonlinear constrained problems. The latter functionality is essential for this type of optimization problem where nonlinear constraints are introduced such as maximum tension, no compression, maximum curvature and elongation, and the aero-hydrodynamic simulation solver does not provide any gradient information. The optimization tool is able to find various local feasible extrema thanks to a multi-start approach, which leads to several solutions of the cable configuration. The sensitivity to the choice of the initial point is demonstrated, illustrating the complexity of the feasible domain and the resulting difficulty in finding the global optimum configuration.


2012 ◽  
Vol 268-270 ◽  
pp. 1416-1421
Author(s):  
Yu Hui Zhang ◽  
Li Wen Guan ◽  
Li Ping Wang ◽  
Yong Zhi Hua

The forward kinematics analysis of parallel manipulator is a difficult issue, which has been studied by many researchers recently. In this paper, in order to solve the difficult issue, a new computing method with higher calculation accuracy, good operation steadiness and faster speed is mentioned. Firstly, the mathematical model of direct kinematics of the Stewart platform is founded, which is nonlinear equations. Secondly, with the rapid development of artificial intelligence technology, Memetic algorithms (MA) are applied to solve the systems of nonlinear equations more and more, replacing the traditional algorithms. MA is a kind of meta-heuristic algorithm combined genetic algorithms (GA) with local search at the end of iteration. Finally, the validity of this algorithm has been testified by simulating iteration operation. The numerical simulation shows that MA can surely and rapidly get global optimum solution and greatly improve convergence rate. Thereby, MA can be widely used as a general-purpose algorithm for solving the forward kinematics of parallel mechanism.


Author(s):  
Marcus Pettersson ◽  
Johan O¨lvander

Box’s Complex method for direct search has shown promise when applied to simulation based optimization. In direct search methods, like Box’s Complex method, the search starts with a set of points, where each point is a solution to the optimization problem. In the Complex method the number of points must be at least one plus the number of variables. However, in order to avoid premature termination and increase the likelihood of finding the global optimum more points are often used at the expense of the required number of evaluations. The idea in this paper is to gradually remove points during the optimization in order to achieve an adaptive Complex method for more efficient design optimization. The proposed method shows encouraging results when compared to the Complex method with fix number of points and a quasi-Newton method.


Sign in / Sign up

Export Citation Format

Share Document