scholarly journals Reliability of Evaluation of the Craniocervical Junction by XR, CT and MRI in Patients with Genetic Skeletal Diseases

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Cunha Júnior AL ◽  
◽  
Silva Champs AP ◽  
Meirelles Mello C ◽  
Barduco Carvalho CM ◽  
...  

Background: Craniocervical Junction (CCJ) imaging interpretation in patients with Genetic Skeletal Disorders (GSDs) is challenging due to bone tissue disorganization. CCJ abnormalities and spinal cord compression present potential risks. Purpose: To describe and compare CCJ measurements in patients with GSDs using XR, CT and MRI. Materials and Methods: This cross-sectional observational and analytical study prospectively included 287 participants. Clinical evaluation, spine XR, CCJ dynamic CT, and brain and spinal cord MRI data were recorded. The participants were separated into groups with and without cervical Spinal Cord Injury (cSCI). Three craniometry measurements were performed with each imaging method, and the reliability and reproducibility were analyzed. Results: cSCI was identified in 4.5%. Spinal canal stenosis at C2 (78.8%), a narrowed foramen magnum (12,5%), os odontoideum (5.9%), ventral cervicomedullary encroachment by the odontoid (20.2%), and basilar impression/invagination (12.9%) were associated with an increased chance of cSCI. CT showed the highest accuracy for bone abnormality diagnoses. The cutoff points for the spinal canal to diagnose cSCI were 17.3 mm with XR, 12.9 mm with CT and 10.4 mm with MRI. Conclusion: CT showed good reliability and reproducibility in evaluating the CCJ in GSDs. XR presented more limitations but provided complementary data to MRI.

2013 ◽  
Vol 20 (2) ◽  
pp. 79-83
Author(s):  
Monique Boukobza ◽  
Jurgita Ušinskienė ◽  
Simona Letautienė

Background. Our objective is to analyze the cervical spinal cord damage and spinal canal stenosis due to OPLL which usually affects the cervical spine and leads to progressive myelopathy in 50–60s in Asian population; to demonstrate the mixed type OPLL and to show OPLL specific dural penetration signs: “double- layer” and “C-sign” on imaging. Materials and methods. Subacute cord compression developed over a 3-month period in a 43-year-old Japanese patient. Severe spinal canal narrowing was related to the mixed type OPLL at C3–C4 through C6–C7 associated to flavum ligament ossification at T3–T4. Lateral radiograph of the cervical spine showed intraspinal ossification, CT demonstrated specific dural penetration signs, and MRI disclosed spinal cord compression. Laminectomy at C3–C7 was performed and decompression of the spinal cord was confirmed by postoperative MRI. Conclusions. Absolute cervical stenosis and association with other diseases (like calcification of flavum ligament) predispose the patient to develop more severe deficit earlier in the clinical course. Specific CT signs, “double-layer” and “C-sign”, show dural involvement. MRI is a very useful modality to identify the precise level and extent of the spinal cord injury. OPLL must be included in the differential diagnosis of subacute cervical myelopathy.


2020 ◽  
Vol 6 (2) ◽  
pp. e401 ◽  
Author(s):  
Linda Solstrand Dahlberg ◽  
Olivia Viessmann ◽  
Clas Linnman

ObjectiveMeasures of spinal cord structure can be a useful phenotype to track disease severity and development; this observational study measures the hereditability of cervical spinal cord anatomy and its correlates in healthy human beings.MethodsTwin data from the Human Connectome Project were analyzed with semiautomated spinal cord segmentation, evaluating test-retest reliability and broad-sense heritability with an AE model. Relationships between spinal cord metrics, general physical measures, regional brain structural measures, and motor function were assessed.ResultsWe found that the spinal cord C2 cross-sectional area (CSA), left-right width (LRW), and anterior-posterior width (APW) are highly heritable (85%–91%). All measures were highly correlated with the brain volume, and CSA only was positively correlated with thalamic volumes (p = 0.005) but negatively correlated with the occipital cortex area (p = 0.001). LRW was correlated with the participant's height (p = 0.00027). The subjects' sex significantly influenced these metrics. Analyses of a test-retest data set confirmed validity of the approach.ConclusionsThis study provides the evidence of genetic influence on spinal cord structure. MRI metrics of cervical spinal cord anatomy are robust and not easily influenced by nonpathological environmental factors, providing a useful metric for monitoring normal development and progression of neurodegenerative disorders affecting the spinal cord, including—but not limited to—spinal cord injury and MS.


2017 ◽  
Vol 18 (1) ◽  
pp. 5-9
Author(s):  
Badri Rijal ◽  
R K Pokharel ◽  
S Paudel ◽  
L L Shah

Introduction: Acute cervical trauma occasionally leads to cervical canal stenosis in some individuals in spite of minor trauma. The spinal canal-to-vertebral body ratio (Torg-Pavlov ratio) has been proposed for assessing developmental spinal canal stenosis. It is not affected by magnification, and is measured on lateral plain films of cervical vertebrae. The result of this study may help in better understanding of the Torg’s ratio, which is more reliable than direct measuring of the mid-sagittal diameter of the cervical spinal canal in the diagnosis of cervical spinal stenosis or predicting the prognosis of cervical spinal cord injury. If Torg’s ratio is below normal there is risk of cervical cord injury whereas relatively safe in large Torg’s ratio. Torg’s ratio can be accessed even in rural areas where x-rays are easily available and more economical than MRI and CT scan. It can assess the risk of cord injury during sports and outdoor activities and help individuals’ choose safe carrier in sports or others activities.Methods: In order to ascertain the normal values of the Torg’s ratio in adults Nepalese, hundred sets of cervical vertebral columns of hundred adult Nepalese population of age group 20-40 years were examined. Consecutive patients presenting with history of neck pain with normal x-ray findings or history of trauma without cervical spine injury from Orthopaedic OPD (out patients department) and emergency department of Tribhuvan University Teaching Hospital, Maharajgunj, Kathmandu from March 2011 to August 2012 were included in the study.Results: There were 48 males and 52 females with age ranging from 20 yrs to 40 yrs with the mean of 30.34±5.36 years. The normal average canal/body ratio of the cervical spine is 0.99 +/- 0.09 in male and 1.01 +/- 0.07 in female. It was observed that the ratio of the antero-posterior diameters of cervical spinal canal and vertebral bodies showed sexual dimorphism.Conclusion: The Torg’s ratio is the same irrespective of gender and height. The result of this study will help in better understanding of the Torg’s ratio, which is more reliable than direct measuring of the mid-sagittal diameter of the cervical spinal canal in the diagnosis of cervical spinal stenosis or predicting the prognosis of cervical spinal cord injury.JSSN 2015; 18 (1), Page: 5-9


2020 ◽  
Author(s):  
Zhou Run-tian ◽  
Zhao Yi-bo ◽  
Lu Xiang-dong ◽  
Zhao Xiao-feng ◽  
Wang Xiao-nan ◽  
...  

Abstract Backgrounds: Cervical vertebral dome expansion laminoplasty is a new surgical method for the treatment of cervical spondylosis. We analyzed correlations between the selection of microtitanium plates with different specifications for use in a cervical vertebral dome expansion laminoplasty to establish guidance for the selection of suitable microtitanium plates.Methods: Sixteen patients that underwent the new, full lamina posterior spinal canal enlargement with a cervical spinal stenosis angioplasty procedure for treatment of their cervical spinal cords were recruited at our hospital. From February 2017-September 2018, medical records confirmed that all patients underwent cervical CT and MRI tests pre- and postsurgery. The anteroposterior diameter of the spinal canal, changes in the cross-sectional area of the spinal canal, and the pre- and postsurgery distance of the cervical spinal cord after applying microtitanium plates with different lengths were measured by Mimics version 17.0 software. A statistical regression and correlation analysis of relevant specification parameters of the microtitanium plate was then studied.Results: As the size of the microtitanium plate increased, we found that the cross-sectional area of cervical spinal canal and distance between the descendants of the lamina and the distance of cervical spinal cord concordantly increased. The regression equation associated with sagittal diameter, cross-sectional area, and posterior movement distance of the cervical spinal cord was obtained.Conclusions: The use of the corresponding regression equations enabled the prediction of the cervical spinal canal parameters and posterior movement distance of the cervical spinal cord when adopting different specifications of the microtitanium plate for different segments of the cervical vertebrae. This analysis guided the selection of microtitanium plates with appropriate specifications for different cervical vertebrae in a cervical vertebral dome expansion laminoplasty.


Sign in / Sign up

Export Citation Format

Share Document