Self testing quantum apparatus

2004 ◽  
Vol 4 (4) ◽  
pp. 273-286
Author(s):  
D. Mayers ◽  
A. Yao

We study, in the context of quantum information and quantum communication, a configuration of devices that includes (1) a source of some unknown bipartite quantum state that is claimed to be the Bell state $\Phi^+$ and (2) two spatially separated but otherwise unknown measurement apparatus, one on each side, that are each claimed to execute an orthogonal measurement at an angle $\theta \in \{-\pi/8, 0, \pi/8\}$ that is chosen by the user. We show that, if the nine distinct probability distributions that are generated by the self checking configuration, one for each pair of angles, are consistent with the specifications, the source and the two measurement apparatus are guaranteed to be identical to the claimed specifications up to a local change of basis on each side. We discuss the connection with quantum cryptography. testing quantum apparatus (pp273-286) D. Mayers and A. Yao We study, in the context of quantum information and quantum communication, a configuration of devices that includes (1) a source of some unknown bipartite quantum state that is claimed to be the Bell state $\Phi^+$ and (2) two spatially separated but otherwise unknown measurement apparatus, one on each side, that are each claimed to execute an orthogonal measurement at an angle $\theta \in \{-\pi/8, 0, \pi/8\}$ that is chosen by the user. We show that, if the nine distinct probability distributions that are generated by the self checking configuration, one for each pair of angles, are consistent with the specifications, the source and the two measurement apparatus are guaranteed to be identical to the claimed specifications up to a local change of basis on each side. We discuss the connection with quantum cryptography.


2002 ◽  
Vol 2 (1) ◽  
pp. 1-13
Author(s):  
S.J. van Enk ◽  
H.J. Kimble

Control fields in quantum information processing are almost by definition assumed to be classical. In reality, however, when such a field is used to manipulate the quantum state of qubits, the qubits always become slightly entangled with the field. For quantum information processing this is an undesirable property, as it precludes perfect quantum computing and quantum communication. Here we consider the interaction of atomic qubits with laser fields and quantify atom-field entanglement in various cases of interest. We find that the entanglement decreases with the average number of photons \bar{n} in a laser beam as $E\propto\log_2 \bar{n}/\bar{n}$ for $\bar{n}\rightarrow\infty$.



Atoms ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 76 ◽  
Author(s):  
Alberto Casado ◽  
Santiago Guerra ◽  
José Plácido

TheWigner formalism in the Heisenberg picture constitutes a bridge that connects QuantumOptics to Stochastic Optics. The vacuum field appears explicitly in the formalism, and the wavelikeaspects of light are emphasised. In addition, the zeropoint intensity as a threshold for detection is acommon denominator in both theories. In this paper, after summarising the basic rules of the Wignerapproach and its application to parametric down-conversion, some new results are presented thatdelve into the physical meaning of the zeropoint field in optical quantum communication. Specifically,the relationship between Bell-state distinguishability and the number of sets of zeropoint modesthat take part in the experiment is analysed in terms of the coupling between the phases of thedifferent fields involved and the subtraction of the zeropoint intensity at the detectors. Additionally,the connection between the compatibility theorem in quantum cryptography and zeropoint fieldis stressed.



2007 ◽  
Vol 21 (29) ◽  
pp. 2019-2023 ◽  
Author(s):  
HARI PRAKASH ◽  
NARESH CHANDRA ◽  
RANJANA PRAKASH ◽  
AMBESH DIXIT

We consider the teleportation of quantum information consisting of the quantum state of a set S1 of N two-level systems (TLSs), using EPR entangled state consisting of set S2⊕S3 where set S2 has M TLSs and set S3 has N TLSs. The Bell state measurement is done on set S1⊕S2 and a unitary transformation, dependent on this result, on the quantum state of set S3 generates a replica of the original state of set S1. We show rigorously that the teleportation is possible only if M ≥ N.





2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yao-Hsin Chou ◽  
Guo-Jyun Zeng ◽  
Xing-Yu Chen ◽  
Shu-Yu Kuo

AbstractSecret sharing is a widely-used security protocol and cryptographic primitive in which all people cooperate to restore encrypted information. The characteristics of a quantum field guarantee the security of information; therefore, many researchers are interested in quantum cryptography and quantum secret sharing (QSS) is an important research topic. However, most traditional QSS methods are complex and difficult to implement. In addition, most traditional QSS schemes share classical information, not quantum information which makes them inefficient to transfer and share information. In a weighted threshold QSS method, each participant has each own weight, but assigning weights usually costs multiple quantum states. Quantum state consumption will therefore increase with the weight. It is inefficient and difficult, and therefore not able to successfully build a suitable agreement. The proposed method is the first attempt to build multiparty weighted threshold QSS method using single quantum particles combine with the Chinese remainder theorem (CRT) and phase shift operation. The proposed scheme allows each participant has its own weight and the dealer can encode a quantum state with the phase shift operation. The dividing and recovery characteristics of CRT offer a simple approach to distribute partial keys. The reversibility of phase shift operation can encode and decode the secret. The proposed weighted threshold QSS scheme presents the security analysis of external attacks and internal attacks. Furthermore, the efficiency analysis shows that our method is more efficient, flexible, and simpler to implement than traditional methods.



2017 ◽  
Vol 95 (5) ◽  
pp. 498-503
Author(s):  
Syed Tahir Amin ◽  
Aeysha Khalique

We present our model to teleport an unknown quantum state using entanglement between two distant parties. Our model takes into account experimental limitations due to contribution of multi-photon pair production of parametric down conversion source, inefficiency, dark counts of detectors, and channel losses. We use a linear optics setup for quantum teleportation of an unknown quantum state by the sender performing a Bell state measurement. Our theory successfully provides a model for experimentalists to optimize the fidelity by adjusting the experimental parameters. We apply our model to a recent experiment on quantum teleportation and the results obtained by our model are in good agreement with the experimental results.



2001 ◽  
Vol 15 (27) ◽  
pp. 1259-1264 ◽  
Author(s):  
M. ANDRECUT ◽  
M. K. ALI

The preparation of a quantum register in an arbitrary superposed quantum state is an important operation for quantum computation and quantum information processing. Here, we present an efficient algorithm which requires a polynomial number of elementary operations for initializing the amplitude distribution of a quantum register.



Sign in / Sign up

Export Citation Format

Share Document