scholarly journals HyFactor: Hydrogen-count labelled graph-based defactorization Autoencoder

Author(s):  
Tagir Akhmetshin ◽  
Arkadii Lin ◽  
Daniyar Mazitov ◽  
Evgenii Ziaikin ◽  
Timur Madzhidov ◽  
...  

Graph-based architectures are becoming increasingly popular as a tool for structure generation. Here, we introduce a novel open-source architecture HyFactor which is inspired by previously reported DEFactor architecture and based on the hydrogen labeled graphs. Since the original DEFactor code was not available, its new implementation (ReFactor) was prepared in this work for the benchmarking purpose. HyFactor demonstrates its high performance on the ZINC 250K MOSES and ChEMBL data set and in molecular generation tasks, it is considerably more effective than ReFactor. The code of HyFactor and all models obtained in this study are publicly available from our GitHub repository: https://github.com/Laboratoire-de-Chemoinformatique/hyfactor

2022 ◽  
Author(s):  
Eugen Hruska ◽  
Ariel Gale ◽  
Xiao Huang ◽  
Fang Liu

The availability of large, high-quality data sets is crucial for artificial intelligence design and discovery in chemistry. Despite the essential roles of solvents in chemistry, the rapid computational data set generation of solution-phase molecular properties at the quantum mechanical level of theory was previously hampered by the complicated simulation procedure. Software toolkits that can automate the procedure to set up high-throughput explicit-solvent quantum chemistry (QC) calculations for arbitrary solutes and solvents in an open-source framework are still lacking. We developed AutoSolvate, an open-source toolkit to streamline the workflow for QC calculation of explicitly solvated molecules. It automates the solvated-structure generation, force field fitting, configuration sampling, and the final extraction of microsolvated cluster structures that QC packages can readily use to predict molecular properties of interest. AutoSolvate is available through both a command line interface and a graphical user interface, making it accessible to the broader scientific community. To improve the quality of the initial structures generated by AutoSolvate, we investigated the dependence of solute-solvent closeness on solute/solvent identities and trained a machine learning model to predict the closeness and guide initial structure generation. Finally, we tested the capability of AutoSolvate for rapid data set curation by calculating the outer-sphere reorganization energy of a large data set of 166 redox couples, which demonstrated the promise of the AutoSolvate package for chemical discovery efforts.


Author(s):  
C. Sauer ◽  
F. Bagusat ◽  
M.-L. Ruiz-Ripoll ◽  
C. Roller ◽  
M. Sauer ◽  
...  

AbstractThis work aims at the characterization of a modern concrete material. For this purpose, we perform two experimental series of inverse planar plate impact (PPI) tests with the ultra-high performance concrete B4Q, using two different witness plate materials. Hugoniot data in the range of particle velocities from 180 to 840 m/s and stresses from 1.1 to 7.5 GPa is derived from both series. Within the experimental accuracy, they can be seen as one consistent data set. Moreover, we conduct corresponding numerical simulations and find a reasonably good agreement between simulated and experimentally obtained curves. From the simulated curves, we derive numerical Hugoniot results that serve as a homogenized, mean shock response of B4Q and add further consistency to the data set. Additionally, the comparison of simulated and experimentally determined results allows us to identify experimental outliers. Furthermore, we perform a parameter study which shows that a significant influence of the applied pressure dependent strength model on the derived equation of state (EOS) parameters is unlikely. In order to compare the current results to our own partially reevaluated previous work and selected recent results from literature, we use simulations to numerically extrapolate the Hugoniot results. Considering their inhomogeneous nature, a consistent picture emerges for the shock response of the discussed concrete and high-strength mortar materials. Hugoniot results from this and earlier work are presented for further comparisons. In addition, a full parameter set for B4Q, including validated EOS parameters, is provided for the application in simulations of impact and blast scenarios.


2021 ◽  
pp. 016555152110184
Author(s):  
Gunjan Chandwani ◽  
Anil Ahlawat ◽  
Gaurav Dubey

Document retrieval plays an important role in knowledge management as it facilitates us to discover the relevant information from the existing data. This article proposes a cluster-based inverted indexing algorithm for document retrieval. First, the pre-processing is done to remove the unnecessary and redundant words from the documents. Then, the indexing of documents is done by the cluster-based inverted indexing algorithm, which is developed by integrating the piecewise fuzzy C-means (piFCM) clustering algorithm and inverted indexing. After providing the index to the documents, the query matching is performed for the user queries using the Bhattacharyya distance. Finally, the query optimisation is done by the Pearson correlation coefficient, and the relevant documents are retrieved. The performance of the proposed algorithm is analysed by the WebKB data set and Twenty Newsgroups data set. The analysis exposes that the proposed algorithm offers high performance with a precision of 1, recall of 0.70 and F-measure of 0.8235. The proposed document retrieval system retrieves the most relevant documents and speeds up the storing and retrieval of information.


2017 ◽  
Vol 45 (4) ◽  
pp. 319-328 ◽  
Author(s):  
Lawrence V. Stanislawski ◽  
Kornelijus Survila ◽  
Jeffrey Wendel ◽  
Yan Liu ◽  
Barbara P. Buttenfield

2018 ◽  
Vol 10 (8) ◽  
pp. 80
Author(s):  
Lei Zhang ◽  
Xiaoli Zhi

Convolutional neural networks (CNN for short) have made great progress in face detection. They mostly take computation intensive networks as the backbone in order to obtain high precision, and they cannot get a good detection speed without the support of high-performance GPUs (Graphics Processing Units). This limits CNN-based face detection algorithms in real applications, especially in some speed dependent ones. To alleviate this problem, we propose a lightweight face detector in this paper, which takes a fast residual network as backbone. Our method can run fast even on cheap and ordinary GPUs. To guarantee its detection precision, multi-scale features and multi-context are fully exploited in efficient ways. Specifically, feature fusion is used to obtain semantic strongly multi-scale features firstly. Then multi-context including both local and global context is added to these multi-scale features without extra computational burden. The local context is added through a depthwise separable convolution based approach, and the global context by a simple global average pooling way. Experimental results show that our method can run at about 110 fps on VGA (Video Graphics Array)-resolution images, while still maintaining competitive precision on WIDER FACE and FDDB (Face Detection Data Set and Benchmark) datasets as compared with its state-of-the-art counterparts.


2021 ◽  
Author(s):  
Oliver Stenzel ◽  
Robin Thor ◽  
Martin Hilchenbach

<p>Orbital Laser altimeters deliver a plethora of data that is used to map planetary surfaces [1] and to understand interiors of solar system bodies [2]. Accuracy and precision of laser altimetry measurements depend on the knowledge of spacecraft position and pointing and on the instrument. Both are important for the retrieval of tidal parameters. In order to assess the quality of the altimeter retrievals, we are training and implementing an artificial neural network (ANN) to identify and exclude scans from analysis which yield erroneous data. The implementation is based on the PyTorch framework [3]. We are presenting our results for the MESSENGER Mercury Laser Altimeter (MLA) data set [4], but also in view of future analysis of the BepiColombo Laser Altimeter (BELA) data, which will arrive in orbit around Mercury in 2025 on board the Mercury Planetary Orbiter [5,6]. We further explore conventional methods of error identification and compare these with the machine learning results. Short periods of large residuals or large variation of residuals are identified and used to detect erroneous measurements. Furthermore, long-period systematics, such as those caused by slow variations in instrument pointing, can be modelled by including additional parameters.<br>[1] Zuber, Maria T., David E. Smith, Roger J. Phillips, Sean C. Solomon, Gregory A. Neumann, Steven A. Hauck, Stanton J. Peale, et al. ‘Topography of the Northern Hemisphere of Mercury from MESSENGER Laser Altimetry’. Science 336, no. 6078 (13 April 2012): 217–20. https://doi.org/10.1126/science.1218805.<br>[2] Thor, Robin N., Reinald Kallenbach, Ulrich R. Christensen, Philipp Gläser, Alexander Stark, Gregor Steinbrügge, and Jürgen Oberst. ‘Determination of the Lunar Body Tide from Global Laser Altimetry Data’. Journal of Geodesy 95, no. 1 (23 December 2020): 4. https://doi.org/10.1007/s00190-020-01455-8.<br>[3] Paszke, Adam, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, et al. ‘PyTorch: An Imperative Style, High-Performance Deep Learning Library’. Advances in Neural Information Processing Systems 32 (2019): 8026–37.<br>[4] Cavanaugh, John F., James C. Smith, Xiaoli Sun, Arlin E. Bartels, Luis Ramos-Izquierdo, Danny J. Krebs, Jan F. McGarry, et al. ‘The Mercury Laser Altimeter Instrument for the MESSENGER Mission’. Space Science Reviews 131, no. 1 (1 August 2007): 451–79. https://doi.org/10.1007/s11214-007-9273-4.<br>[5] Thomas, N., T. Spohn, J. -P. Barriot, W. Benz, G. Beutler, U. Christensen, V. Dehant, et al. ‘The BepiColombo Laser Altimeter (BELA): Concept and Baseline Design’. Planetary and Space Science 55, no. 10 (1 July 2007): 1398–1413. https://doi.org/10.1016/j.pss.2007.03.003.<br>[6] Benkhoff, Johannes, Jan van Casteren, Hajime Hayakawa, Masaki Fujimoto, Harri Laakso, Mauro Novara, Paolo Ferri, Helen R. Middleton, and Ruth Ziethe. ‘BepiColombo—Comprehensive Exploration of Mercury: Mission Overview and Science Goals’. Planetary and Space Science, Comprehensive Science Investigations of Mercury: The scientific goals of the joint ESA/JAXA mission BepiColombo, 58, no. 1 (1 January 2010): 2–20. https://doi.org/10.1016/j.pss.2009.09.020.</p>


2012 ◽  
Vol 51 (05) ◽  
pp. 441-448 ◽  
Author(s):  
P. F. Neher ◽  
I. Reicht ◽  
T. van Bruggen ◽  
C. Goch ◽  
M. Reisert ◽  
...  

SummaryBackground: Diffusion-MRI provides a unique window on brain anatomy and insights into aspects of tissue structure in living humans that could not be studied previously. There is a major effort in this rapidly evolving field of research to develop the algorithmic tools necessary to cope with the complexity of the datasets.Objectives: This work illustrates our strategy that encompasses the development of a modularized and open software tool for data processing, visualization and interactive exploration in diffusion imaging research and aims at reinforcing sustainable evaluation and progress in the field.Methods: In this paper, the usability and capabilities of a new application and toolkit component of the Medical Imaging and Interaction Toolkit (MITK, www.mitk.org), MITKDI, are demonstrated using in-vivo datasets.Results: MITK-DI provides a comprehensive software framework for high-performance data processing, analysis and interactive data exploration, which is designed in a modular, extensible fashion (using CTK) and in adherence to widely accepted coding standards (e.g. ITK, VTK). MITK-DI is available both as an open source software development toolkit and as a ready-to-use in stallable application.Conclusions: The open source release of the modular MITK-DI tools will increase verifiability and comparability within the research community and will also be an important step towards bringing many of the current techniques towards clinical application.


2021 ◽  
Author(s):  
Lucas Bragança ◽  
Jeronimo Penha ◽  
Michael Canesche ◽  
Dener Ribeiro ◽  
José Augusto M. Nacif ◽  
...  

FPGAs are suitable to speed up gene regulatory network (GRN) algorithms with high throughput and energy efficiency. In addition, virtualizing FPGA using hardware generators and cloud resources increases the computing ability to achieve on-demand accelerations across multiple users. Recently, Amazon AWS provides high-performance Cloud's FPGAs. This work proposes an open source accelerator generator for Boolean gene regulatory networks. The generator automatically creates all hardware and software pieces from a high-level GRN description. We evaluate the accelerator performance and cost for CPU, GPU, and Cloud FPGA implementations by considering six GRN models proposed in the literature. As a result, the FPGA accelerator is at least 12x faster than the best GPU accelerator. Furthermore, the FPGA reaches the best performance per dollar in cloud services, at least 5x better than the best GPU accelerator.


Sign in / Sign up

Export Citation Format

Share Document