scholarly journals An Electric Field–Based Approach for Quantifying Volumes and Radii of Chemically Affected Space

Author(s):  
Austin Mroz ◽  
Joshua Davis ◽  
Christopher Hendon

Chemical shape and size play a critical role in chemistry. The van der Waal (vdW) radii, a familiar manifold used to quantify size by assuming overlapping spheres, provides rapid estimates of size in atoms, molecules, and materials. However, the vdW method may be too rigid to describe highly polarized systems and chemical systems that stray from spherical atomistic environments. To deal with these exotic chemistries, numerous alternate methods based on electron density have been presented. While each boasts inherent generality, all define the size of a chemical system, in one way or another, by its electron density. Herein, we revisit the timeless problem of assessing sizes of atoms and molecules, instead through examination of the electric field produced by them. While conceptually different than nuclei-centered methods like that of van der Waal, the field assesses chemically affected volumes. This approac

2019 ◽  
Vol 625 ◽  
pp. L3 ◽  
Author(s):  
S. Cuadrado ◽  
P. Salas ◽  
J. R. Goicoechea ◽  
J. Cernicharo ◽  
A. G. G. M. Tielens ◽  
...  

Context. A significant fraction of the molecular gas in star-forming regions is irradiated by stellar UV photons. In these environments, the electron density (ne) plays a critical role in the gas dynamics, chemistry, and collisional excitation of certain molecules. Aims. We determine ne in the prototypical strongly irradiated photodissociation region (PDR), the Orion Bar, from the detection of new millimeter-wave carbon recombination lines (mmCRLs) and existing far-IR [13C II] hyperfine line observations. Methods. We detect 12 mmCRLs (including α, β, and γ transitions) observed with the IRAM 30 m telescope, at ∼25″ angular resolution, toward the H/H2 dissociation front (DF) of the Bar. We also present a mmCRL emission cut across the PDR. Results. These lines trace the C+/C/CO gas transition layer. As the much lower frequency carbon radio recombination lines, mmCRLs arise from neutral PDR gas and not from ionized gas in the adjacent H II region. This is readily seen from their narrow line profiles (Δv = 2.6 ± 0.4 km s−1) and line peak velocities (vLSR = +10.7 ± 0.2 km s−1). Optically thin [13C II] hyperfine lines and molecular lines – emitted close to the DF by trace species such as reactive ions CO+ and HOC+ – show the same line profiles. We use non-LTE excitation models of [13C II] and mmCRLs and derive ne = 60–100 cm−3 and Te = 500–600 K toward the DF. Conclusions. The inferred electron densities are high, up to an order of magnitude higher than previously thought. They provide a lower limit to the gas thermal pressure at the PDR edge without using molecular tracers. We obtain Pth ≥ (2−4) × 108 cm−3 K assuming that the electron abundance is equal to or lower than the gas-phase elemental abundance of carbon. Such elevated thermal pressures leave little room for magnetic pressure support and agree with a scenario in which the PDR photoevaporates.


2018 ◽  
Vol 2 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Michel Vong ◽  
Norbert Radacsi

Abstract This paper reports on the rapid fabrication of radially-aligned, three-dimensional conical structures by electrospinning. Three different polymers, Polyvinylpyrrolidone, Polystyrene and Polyacrylonitrile were used to electrospin the cones. These cone structures are spreading out from a vertical conductive pillar, which can be arbitrarily placed on specific part of the collector. The lower part of the cone is clearly defined on the collector, and the cone has a relatively uniform radius around the pillar. The cones are constituted of fibers that are radially aligned towards the top of the pillar, but there is no apex and the fibers fall flat on the top of the pillar surface. A parametric study has been performed to investigate the effects of the pillar morphology (height and thickness) and the electrospinning parameters (applied voltage and working distance) on the overall shape and size of the cone structure, as well as the fiber alignment. The pillar morphology influences directly the cone diameter and height. The electrospinning parameters have little effect on the cone structure. The formation mechanism has been identified to be related to the shape of the electric field, which has been systematically simulated to understand the effect of the electric field lines on the final dimensions of the cone structure.


1996 ◽  
Vol 14 (2) ◽  
pp. 211-221 ◽  
Author(s):  
A. V. Pavlov

Abstract. This study compares the measurements of electron density and temperature and the integral airglow intensity at 630 nm in the SAR arc region and slightly south of this (obtained by the Isis 2 spacecraft during the 18 December 1971 magnetic storm), with the model results obtained using the time dependent one-dimensional mathematical model of the Earth\\'s ionosphere and plasmasphere. The explicit expression in the third Enskog approximation for the electron thermal conductivity coefficient in the multicomponent mixture of ionized gases and a simplified calculation method for this coefficient presents an opportunity to calculate more exactly the electron temperature and density and 630 nm emission within SAR arc region are used in the model. Collisions between N2 and hot thermal electrons in the SAR arc region produce vibrationally excited nitrogen molecules. It appears that the loss rate of O+(4S) due to reactions with the vibrationally excited nitrogen is enough to explain electron density depression by a factor of two at F-region heights and the topside ionosphere density variations within the SAR arc if the erosion of plasma within geomagnetic field tubes, during the main phase of the geomagnetic storm and subsequent filling of geomagnetic tubes during the recovery phase, are considered. To explain the disagreement by a factor 1.5 between the observed and modeled SAR arc electron densities an additional plasma drift velocity ~–30 m s–1 in the ion continuity equations is needed during the recovery phase. This additional plasma drift velocity is likely caused by the transition from convecting to corotating flux tubes on the equatorward wall of the trough. The electron densities and temperatures and 630 nm integral intensity at the SAR arc and slightly south of this region as measured for the 18 December 1971 magnetic storm were correctly described by the model without perpendicular electric fields. Within this model framework the effect of the perpendicular electric field ~100 mv m–1 with a duration ~1 h on the SAR arc electron density profiles was found to be large. However, this effect is small if ~1–2 h have passed after the electric field was set equal to zero.


2020 ◽  
Author(s):  
Gabriel Giono ◽  
Nickolay Ivchenko ◽  
Tima Sergienko

<p>On February 2<sup>nd</sup> 2016 the SPIDER sounding rocket released ten Free Falling Units (FFUs) inside an active westward-travelling auroral electrojet (between 100 to 120 km altitude). Each FFUs carried four electric field probes and four Langmuir probes, respectively on 2 and 1-meter wire booms, as well as a 3-axis fluxgate magnetometer, a gyroscope, an accelerometer and a GPS recorder. The main scientific objective of the project was to study waves and instabilities on various spatial scales, in particular the Farley-Buneman instability, as well as providing an in-situ picture of plasma properties inside the aurora.</p><p>Six FFUs were successfully recovered after landing and, despite some mechanical issues on some units, the recorded data showed promising results. Some of these results will be discussed in this presentation, namely (i) the electron density and temperature profiles from two FFUs compared to the incoherent scatter radar measurements from the EISCAT facility, (ii) the hints of different turbulence regimes along the flight seen in the electron density, (iii) the search for Farley-Buneman instability in the electric field data via wavelet analysis, (iv) the observation of electric field waves propagating between two FFUs and the comparison with ground-based observation of the aurora from the ALIS multi-camera system, and finally (v) a global comparison between perturbations seen in the electric field, magnetic field and plasma density and temperature on two FFUs.</p><p>These results demonstrated the potential of multi-point in-situ measurements for understanding multi-scale processes in auroras, and preliminary results from the reflight of the rocket to be happening in February 2020 will also be briefly presented.</p>


Sign in / Sign up

Export Citation Format

Share Document